แบนเนอร์
บ้าน

บล็อก

เอกสารสำคัญ
แท็ก

บล็อก

  • หลักการปรับสมดุลอุณหภูมิภายในห้องทดสอบด้วยวาล์วอากาศ
    Sep 22, 2025
    หลักการสำคัญคือระบบป้อนกลับเชิงลบแบบวงปิดที่ควบคุม "ความร้อน - การวัด - การควบคุม" กล่าวโดยง่ายคือการควบคุมกำลังขององค์ประกอบความร้อนภายในกล่องอย่างแม่นยำ เพื่อต่อต้านการกระจายความร้อนที่เกิดจากสภาพแวดล้อมภายนอก เพื่อรักษาอุณหภูมิทดสอบให้คงที่สูงกว่าอุณหภูมิแวดล้อม กระบวนการที่วาล์วอากาศรักษาอุณหภูมิให้คงที่นั้นเป็นกระบวนการวงปิดแบบไดนามิกและปรับอย่างต่อเนื่อง: ขั้นแรก ให้ตั้งค่าอุณหภูมิเป้าหมาย เซ็นเซอร์วัดอุณหภูมิจะวัดอุณหภูมิจริงภายในกล่องแบบเรียลไทม์ และส่งสัญญาณไปยังตัวควบคุม PIDเมื่อตัวควบคุม PID คำนวณค่าความผิดพลาด ก็จะคำนวณกำลังความร้อนที่ต้องปรับตามค่าความผิดพลาดผ่านอัลกอริทึม PID โดยอัลกอริทึมจะพิจารณาปัจจัยสามประการP (สัดส่วน) : ค่าความผิดพลาดของกระแสไฟฟ้ามีขนาดใหญ่เท่าใด ยิ่งค่าความผิดพลาดมากเท่าใด ช่วงการปรับกำลังความร้อนก็จะกว้างขึ้นเท่านั้นI (ปริพันธ์) : การสะสมของข้อผิดพลาดในช่วงระยะเวลาหนึ่ง ใช้เพื่อกำจัดข้อผิดพลาดแบบคงที่ (เช่น หากมีความคลาดเคลื่อนเล็กน้อยอยู่เสมอ เทอมปริพันธ์จะค่อยๆ เพิ่มกำลังเพื่อกำจัดข้อผิดพลาดนั้นให้หมดไป)D (ดิฟเฟอเรนเชียล) : อัตราการเปลี่ยนแปลงของค่าความคลาดเคลื่อนของกระแสไฟฟ้า หากอุณหภูมิใกล้ถึงเป้าหมายอย่างรวดเร็ว ระบบจะลดกำลังความร้อนล่วงหน้าเพื่อป้องกัน "โอเวอร์ชูต"3. ตัวควบคุม PID ส่งสัญญาณที่คำนวณแล้วไปยังตัวควบคุมกำลังขององค์ประกอบความร้อน (เช่น รีเลย์โซลิดสเตต SSR) เพื่อควบคุมแรงดันไฟฟ้าหรือกระแสไฟฟ้าที่ใช้กับลวดความร้อนอย่างแม่นยำ จึงควบคุมการสร้างความร้อนได้4. พัดลมหมุนเวียนทำงานอย่างต่อเนื่องเพื่อให้แน่ใจว่าความร้อนที่เกิดจากความร้อนจะกระจายอย่างรวดเร็วและสม่ำเสมอ ขณะเดียวกันยังส่งสัญญาณการเปลี่ยนแปลงของเซ็นเซอร์อุณหภูมิกลับไปยังตัวควบคุมอย่างรวดเร็ว ทำให้ระบบตอบสนองได้ทันท่วงที ตัวปรับสมดุลวาล์วลมจะวัดปริมาตรอากาศ ในขณะที่ความหนาแน่นของอากาศจะแปรผันตามอุณหภูมิ ภายใต้ค่าความดันแตกต่างเดียวกัน อัตราการไหลของมวลหรืออัตราการไหลของปริมาตรที่สอดคล้องกับอากาศที่มีความหนาแน่นต่างกันจะแตกต่างกัน ดังนั้น อุณหภูมิจึงต้องคงที่ที่ค่าคงที่ที่ทราบ เพื่อให้ไมโครโปรเซสเซอร์ภายในเครื่องมือสามารถคำนวณค่าปริมาตรอากาศได้อย่างแม่นยำภายใต้สภาวะมาตรฐานโดยอ้างอิงจากค่าความดันแตกต่างที่วัดได้โดยใช้สูตรที่ตั้งไว้ หากอุณหภูมิไม่คงที่ ผลการวัดจะไม่น่าเชื่อถือ
    อ่านเพิ่มเติม
  • การสร้างสภาพแวดล้อมการทดสอบห้องทดสอบที่ปลอดภัย
    Sep 16, 2025
    กุญแจสำคัญในการสร้างสภาพแวดล้อมการทดสอบที่ปลอดภัยสำหรับห้องปฏิบัติการ ห้องทดสอบอุณหภูมิสูงและต่ำ อยู่ที่การรับรองความปลอดภัยส่วนบุคคล ความปลอดภัยของอุปกรณ์ ความปลอดภัยของชิ้นทดสอบ และความแม่นยำของข้อมูล1.ข้อควรพิจารณาเรื่องความปลอดภัยส่วนบุคคลก่อนเปิดประตูห้องอุณหภูมิสูงเพื่อนำตัวอย่างออกมา จำเป็นต้องสวมอุปกรณ์ป้องกันอุณหภูมิสูงและต่ำอย่างถูกต้อง เมื่อปฏิบัติงานที่อาจทำให้เกิดการกระเด็นหรือการรั่วไหลของก๊าซร้อน/เย็นจัด ขอแนะนำให้สวมหน้ากากป้องกันหรือแว่นตานิรภัยควรติดตั้งห้องทดสอบในห้องปฏิบัติการที่มีการระบายอากาศที่ดี และหลีกเลี่ยงการใช้งานในพื้นที่จำกัด การทดสอบที่อุณหภูมิสูงอาจปล่อยสารระเหยออกจากชิ้นงานทดสอบ การระบายอากาศที่ดีสามารถป้องกันการสะสมของก๊าซอันตรายได้ตรวจสอบให้แน่ใจว่าสายไฟมีคุณสมบัติตรงตามข้อกำหนดของอุปกรณ์ และสายดินต้องเชื่อมต่ออย่างแน่นหนา ที่สำคัญที่สุดคือ ห้ามสัมผัสปลั๊กไฟ สวิตช์ และตัวอย่างด้วยมือเปียกโดยเด็ดขาด เพื่อป้องกันไฟฟ้าช็อต 2. ติดตั้งอุปกรณ์ให้ถูกต้องต้องเว้นระยะห่างความปลอดภัยขั้นต่ำตามที่ผู้ผลิตกำหนด (โดยปกติอย่างน้อย 50-100 เซนติเมตร) ไว้ที่ด้านหลัง ด้านบน และด้านข้างทั้งสองข้างของอุปกรณ์ เพื่อให้คอนเดนเซอร์ คอมเพรสเซอร์ และระบบระบายความร้อนอื่นๆ ทำงานได้ตามปกติ การระบายอากาศที่ไม่ดีอาจทำให้อุปกรณ์ร้อนเกินไป ประสิทธิภาพลดลง และอาจเกิดเพลิงไหม้ได้ขอแนะนำให้จัดเตรียมสายไฟเฉพาะสำหรับห้องทดสอบเพื่อหลีกเลี่ยงการใช้วงจรร่วมกับอุปกรณ์กำลังสูงอื่นๆ (เช่น เครื่องปรับอากาศและเครื่องมือขนาดใหญ่) ซึ่งอาจทำให้เกิดความผันผวนของแรงดันไฟฟ้าหรือสะดุดได้อุณหภูมิแวดล้อมสำหรับการทำงานของอุปกรณ์ควรอยู่ระหว่าง 5°C ถึง 30°C อุณหภูมิแวดล้อมที่สูงเกินไปจะเพิ่มภาระให้กับคอมเพรสเซอร์อย่างมาก ส่งผลให้ประสิทธิภาพการทำความเย็นลดลงและเกิดความผิดปกติ โปรดทราบว่าไม่ควรติดตั้งอุปกรณ์ในที่ที่มีแสงแดดส่องโดยตรง ใกล้แหล่งความร้อน หรือในสถานที่ที่มีการสั่นสะเทือนรุนแรง 3. การรับรองความถูกต้องและความสามารถในการทำซ้ำของการทดสอบควรวางตัวอย่างไว้ตรงกลางห้องทำงานภายในกล่อง ควรเว้นระยะห่างระหว่างตัวอย่างและผนังกล่องให้เพียงพอ (โดยปกติแนะนำให้เว้นระยะห่างมากกว่า 50 มม.) เพื่อให้อากาศภายในกล่องไหลเวียนได้อย่างราบรื่นและอุณหภูมิภายในกล่องคงที่หลังจากดำเนินการทดสอบอุณหภูมิสูงและความชื้นสูง (เช่น ในห้องที่มีอุณหภูมิและความชื้นคงที่) หากจำเป็นต้องทดสอบที่อุณหภูมิต่ำ ควรดำเนินการลดความชื้นเพื่อป้องกันการเกิดน้ำแข็งมากเกินไปภายในห้อง ซึ่งอาจส่งผลต่อประสิทธิภาพของอุปกรณ์ได้ห้ามทำการทดสอบสารไวไฟ สารระเบิด สารกัดกร่อนสูง และสารระเหยง่ายโดยเด็ดขาด ยกเว้นห้องทดสอบป้องกันการระเบิดที่ออกแบบมาเป็นพิเศษสำหรับวัตถุประสงค์นี้ ห้ามวางสินค้าอันตราย เช่น แอลกอฮอล์และน้ำมันเบนซิน ในห้องทดสอบอุณหภูมิสูงและต่ำทั่วไปโดยเด็ดขาด 4. ข้อกำหนดการปฏิบัติงานด้านความปลอดภัยและขั้นตอนฉุกเฉินก่อนใช้งาน ให้ตรวจสอบว่าประตูตู้ปิดสนิทดีหรือไม่ และฟังก์ชันการล็อกประตูเป็นปกติหรือไม่ ตรวจสอบว่าตู้สะอาดและไม่มีสิ่งแปลกปลอมใดๆ ตรวจสอบว่าเส้นโค้งอุณหภูมิที่ตั้งไว้ (โปรแกรม) ถูกต้องหรือไม่ในช่วงระยะเวลาทดสอบ จำเป็นต้องตรวจสอบเป็นประจำว่าสถานะการทำงานของอุปกรณ์เป็นปกติ และมีเสียงหรือสัญญาณเตือนผิดปกติใดๆ หรือไม่มาตรฐานการจัดการและการวางตัวอย่าง: สวมถุงมืออุณหภูมิสูงและต่ำอย่างถูกต้อง หลังจากเปิดประตู ให้หันตัวไปด้านข้างเล็กน้อยเพื่อหลีกเลี่ยงคลื่นความร้อนที่ใบหน้า นำตัวอย่างออกอย่างรวดเร็วและระมัดระวัง แล้วนำไปวางไว้ในบริเวณที่ปลอดภัยการรับมือกับเหตุฉุกเฉิน: ควรทำความคุ้นเคยกับตำแหน่งของปุ่มหยุดฉุกเฉินของอุปกรณ์ หรือวิธีการตัดแหล่งจ่ายไฟหลักอย่างรวดเร็วในกรณีฉุกเฉิน ควรมีถังดับเพลิงคาร์บอนไดออกไซด์ (เหมาะสำหรับเพลิงไหม้จากไฟฟ้า) ไว้ใกล้ ๆ แทนที่จะใช้ถังดับเพลิงชนิดน้ำหรือโฟม
    อ่านเพิ่มเติม
  • คู่มือการทดสอบแรงดันต่ำของห้องทดสอบสามแบบในห้องปฏิบัติการ
    Sep 13, 2025
    ระบบแกนหลักของ ห้องทดสอบแบบสามชุด ประกอบด้วยห้องทดสอบแบบรับแรงดัน ระบบสุญญากาศ ระบบควบคุมอุณหภูมิและความชื้นแบบพิเศษ และตัวควบคุมร่วมความแม่นยำสูง โดยพื้นฐานแล้ว เครื่องทดสอบนี้เป็นชุดอุปกรณ์ที่ซับซ้อนซึ่งผสานรวมห้องทดสอบสภาพแวดล้อมอุณหภูมิ/ความชื้น โต๊ะสั่นสะเทือน และระบบสุญญากาศ (จำลองสูง) เข้าด้วยกัน กระบวนการทดสอบความดันต่ำเป็นกระบวนการควบคุมร่วมที่แม่นยำ ยกตัวอย่างเช่น การทดสอบอุณหภูมิต่ำ-ความดันต่ำ กระบวนการทดสอบมีดังนี้: 1. ขั้นตอนการเตรียม: ติดตั้งตัวอย่างบนพื้นผิวโต๊ะสั่นภายในกล่องให้แน่น (หากไม่ต้องการการสั่นสะเทือน ให้ติดตั้งบนชั้นวางตัวอย่าง) ปิดและล็อคประตูกล่องเพื่อให้แน่ใจว่าแถบปิดผนึกความแข็งแรงสูงทำงานได้อย่างมีประสิทธิภาพ ตั้งค่าโปรแกรมการทดสอบทั้งหมดบนอินเทอร์เฟซควบคุม ซึ่งประกอบด้วย: เส้นโค้งความดัน เส้นโค้งอุณหภูมิ เส้นโค้งความชื้น และเส้นโค้งการสั่นสะเทือน2. การดูดฝุ่นและทำความเย็น: ระบบควบคุมจะเริ่มการทำงานของปั๊มสุญญากาศ และวาล์วสุญญากาศจะเปิดขึ้นเพื่อเริ่มดูดอากาศภายในกล่อง ในขณะเดียวกัน ระบบทำความเย็นก็เริ่มทำงาน โดยส่งอากาศเย็นเข้าไปในกล่อง และอุณหภูมิก็เริ่มลดลง ระบบควบคุมจะประสานงานความเร็วในการสูบของปั๊มสุญญากาศและกำลังของระบบทำความเย็นอย่างไดนามิก เนื่องจากเมื่ออากาศบางลง ประสิทธิภาพการนำความร้อนจะลดลงอย่างมาก และความยากลำบากในการทำความเย็นก็จะเพิ่มขึ้น ระบบอาจไม่เย็นลงอย่างสมบูรณ์จนกว่าความดันอากาศจะลดลงถึงระดับหนึ่ง3. ขั้นตอนการบำรุงรักษาแรงดันต่ำ/อุณหภูมิต่ำ: เมื่อทั้งแรงดันและอุณหภูมิถึงค่าที่ตั้งไว้ ระบบจะเข้าสู่สถานะการบำรุงรักษา เนื่องจากมีการรั่วไหลเพียงเล็กน้อยในกล่องใดๆ เซ็นเซอร์แรงดันจะตรวจสอบแรงดันอากาศแบบเรียลไทม์ เมื่อแรงดันอากาศเกินค่าที่ตั้งไว้ ปั๊มสุญญากาศจะเริ่มสูบลมเล็กน้อยโดยอัตโนมัติ เพื่อคงแรงดันให้อยู่ในช่วงที่แม่นยำมาก4. การเพิ่มความชื้นเป็นขั้นตอนที่ซับซ้อนที่สุด หากจำเป็นต้องจำลองความชื้นสูงในสภาพแวดล้อมที่สูงและมีความกดอากาศต่ำ ระบบควบคุมจะเปิดใช้งานเครื่องกำเนิดไอน้ำภายนอก จากนั้นจะค่อยๆ "ฉีด" ไอน้ำที่เกิดขึ้นเข้าไปในกล่องแรงดันต่ำผ่านวาล์วควบคุมแรงดันและการวัดแบบพิเศษ และเซ็นเซอร์ความชื้นจะทำหน้าที่ควบคุมแบบป้อนกลับ5. หลังจากสิ้นสุดระยะเวลาการทดสอบ ระบบจะเข้าสู่ขั้นตอนการกู้คืน ตัวควบคุมจะเปิดวาล์วระบายความดันหรือวาล์วฉีดอากาศอย่างช้าๆ เพื่อให้อากาศแห้งที่ผ่านการกรองแล้วไหลเข้าไปในกล่องอย่างช้าๆ ทำให้ความดันอากาศกลับสู่ความดันปกติอย่างต่อเนื่อง เมื่อความดันอากาศและอุณหภูมิคงที่ที่อุณหภูมิห้องและความดันปกติ ตัวควบคุมจะส่งสัญญาณเพื่อแจ้งสิ้นสุดการทดสอบ จากนั้นผู้ปฏิบัติงานสามารถเปิดประตูกล่องและนำตัวอย่างออกมาเพื่อทดสอบประสิทธิภาพและประเมินผลต่อไป การทดสอบแรงดันต่ำของห้องทดสอบแบบสามชุดนี้เป็นกระบวนการที่ซับซ้อนอย่างยิ่ง ซึ่งอาศัยการประสานงานอย่างแม่นยำของห้องทดสอบแรงดัน ระบบสุญญากาศอันทรงพลัง และระบบควบคุมอุณหภูมิและความชื้นที่ออกแบบมาเป็นพิเศษสำหรับสภาพแวดล้อมแรงดันต่ำ สามารถจำลองการทดสอบที่สมบุกสมบันของผลิตภัณฑ์ได้อย่างแท้จริงในสภาพแวดล้อมที่สูง สูง และสภาพแวดล้อมอื่นๆ เช่น ความเย็นจัด ออกซิเจนต่ำ (ความกดอากาศต่ำ) และความชื้น จึงเป็นอุปกรณ์ทดสอบสำคัญที่ขาดไม่ได้ในสาขาต่างๆ เช่น การบินและอวกาศ อุตสาหกรรมการทหาร และระบบอิเล็กทรอนิกส์ยานยนต์
    อ่านเพิ่มเติม
  • ผลการกัดกร่อนของเครื่องทดสอบสเปรย์เกลือ ผลการกัดกร่อนของเครื่องทดสอบสเปรย์เกลือ
    Sep 12, 2025
    เครื่องทดสอบการพ่นเกลือเป็นอุปกรณ์ทดสอบการกัดกร่อนที่ใช้กันอย่างแพร่หลาย หน้าที่หลักคือการประเมินความต้านทานการกัดกร่อนของวัสดุโดยการจำลองและเร่งกระบวนการกัดกร่อน ขั้นแรก สารละลายโซเดียมคลอไรด์ (NaCl) ที่พ่นออกมาจะก่อตัวเป็นฟิล์มเกลือบางๆ ที่นำไฟฟ้าได้บนพื้นผิวของตัวอย่าง ฟิล์มของเหลวนี้ในฐานะอิเล็กโทรไลต์ เป็นสภาพแวดล้อมที่จำเป็นสำหรับการกัดกร่อนทางเคมีไฟฟ้า บริเวณที่มีกิจกรรมพื้นผิวของโลหะสูงกว่าจะทำหน้าที่เป็นแอโนด ซึ่งอะตอมของโลหะจะสูญเสียอิเล็กตรอนและเกิดปฏิกิริยาออกซิเดชัน เปลี่ยนเป็นไอออนของโลหะที่ละลายในอิเล็กโทรไลต์ บริเวณที่มีกิจกรรมพื้นผิวของโลหะต่ำกว่าจะทำหน้าที่เป็นแคโทด ปฏิกิริยารีดักชันจะเกิดขึ้นเมื่อมีออกซิเจนอยู่ในสารละลายเกลือ สุดท้าย ไอออนของโลหะที่เกิดขึ้นที่แอโนด (เช่น Fe²⁺) จะรวมกับไอออนของไฮดรอกไซด์ (OH⁻) ที่เกิดขึ้นที่แคโทด ก่อตัวเป็นไฮดรอกไซด์ของโลหะ ซึ่งจะถูกออกซิไดซ์ต่อไปจนกลายเป็นสนิมทั่วไปตัวอย่าง: Fe²⁺ + 2OH⁻ → Fe(OH)₂4Fe(OH)₂ + O₂ → 2Fe₂O₃·H₂O + 2H₂O(สนิมแดง)เมื่อเปรียบเทียบกับการกัดกร่อนแบบช้าในธรรมชาติ การทดสอบการพ่นเกลือจะเร่งกระบวนการกัดกร่อนได้อย่างมากในลักษณะดังต่อไปนี้:1. สภาพแวดล้อมน้ำเกลือที่มีความเข้มข้นสูงอย่างต่อเนื่อง: โดยทั่วไปจะใช้สารละลายโซเดียมคลอไรด์ 5% ซึ่งมีความเข้มข้นสูงกว่าสภาพแวดล้อมตามธรรมชาติส่วนใหญ่ (เช่น น้ำทะเล) มาก ทำให้มีไอออนคลอไรด์ (Cl⁻) ที่มีฤทธิ์กัดกร่อนจำนวนมาก ไอออนคลอไรด์มีพลังทะลุทะลวงสูงและสามารถทำลายฟิล์มพาสซีเวชันบนพื้นผิวโลหะ ทำให้การกัดกร่อนดำเนินต่อไปได้2. การพ่นแบบต่อเนื่อง: เครื่องจะพ่นละอองน้ำเกลืออย่างต่อเนื่องและฉีดเข้าไปในกล่องที่ปิดสนิท เพื่อให้แน่ใจว่าพื้นผิวทั้งหมดของตัวอย่างถูกพ่นด้วยละอองน้ำเกลืออย่างทั่วถึง วิธีนี้ช่วยหลีกเลี่ยงสภาวะอากาศแห้งและเปียกสลับกันในสภาพแวดล้อมธรรมชาติ และช่วยให้การกัดกร่อนดำเนินต่อไปได้อย่างไม่สะดุด3. การให้ความร้อน: อุณหภูมิของ ห้องทดสอบ โดยปกติจะคงที่ที่อุณหภูมิ 35 องศาเซลเซียส อุณหภูมิที่เพิ่มขึ้นจะเร่งอัตราปฏิกิริยาเคมีทั้งหมด รวมถึงกระบวนการกัดกร่อนทางเคมีไฟฟ้า จึงทำให้การกัดกร่อนเร็วขึ้นอย่างมาก4. การจ่ายออกซิเจน: พื้นที่ผิวของละอองออกซิเจนมีขนาดใหญ่มาก ซึ่งสามารถละลายออกซิเจนในอากาศได้อย่างสมบูรณ์ การพ่นอย่างต่อเนื่องช่วยให้มั่นใจได้ว่ามีออกซิเจนเพียงพอต่อปฏิกิริยาการกัดกร่อนแบบแคโทดิกเครื่องทดสอบการพ่นเกลือสำหรับห้องปฏิบัติการ เหมาะสำหรับการทดสอบการพ่นเกลือแบบเป็นกลาง (NSS) และการทดสอบการกัดกร่อน (AASS, CASS) ของผลิตภัณฑ์อิเล็กทรอนิกส์เพื่อการสื่อสาร เครื่องใช้ไฟฟ้า และส่วนประกอบฮาร์ดแวร์ต่างๆ เป็นไปตามมาตรฐานต่างๆ เช่น CNS, ASTM, JIS และ ISO การทดสอบการพ่นเกลือจะดำเนินการบนพื้นผิวของวัสดุต่างๆ ที่ผ่านการเคลือบป้องกันการกัดกร่อน เช่น การเคลือบผิว การชุบด้วยไฟฟ้า การชุบอะโนไดซ์ และน้ำมันป้องกันสนิม เพื่อประเมินความต้านทานการกัดกร่อนของผลิตภัณฑ์ควรสังเกตว่าการทดสอบการพ่นเกลือเป็นการทดสอบแบบเร่งความเร็วสูง และกลไกและสัณฐานวิทยาของการกัดกร่อนไม่เหมือนกันทุกประการกับการทดสอบในสภาพแวดล้อมกลางแจ้งจริง (เช่น การสัมผัสกับบรรยากาศและการแช่น้ำทะเล) ผลิตภัณฑ์ที่ผ่านการทดสอบนี้ไม่ได้หมายความว่าจะมีช่วงเวลาความต้านทานการกัดกร่อนเท่ากันในทุกสภาพแวดล้อมจริง ดังนั้นจึงเหมาะสำหรับการจัดอันดับแบบสัมพัทธ์มากกว่าการคาดการณ์แบบสัมบูรณ์
    อ่านเพิ่มเติม
  • ห้องทดสอบแสงอัลตราไวโอเลตในห้องปฏิบัติการจำลองแสงแดดและฝนได้อย่างไร ห้องทดสอบแสงอัลตราไวโอเลตในห้องปฏิบัติการจำลองแสงแดดและฝนได้อย่างไร
    Sep 10, 2025
    ห้องทดสอบการผุกร่อนด้วยรังสี UV ของ Lab Companion เป็นอุปกรณ์ระดับมืออาชีพที่ใช้จำลองและประเมินประสิทธิภาพความต้านทานของวัสดุภายใต้รังสีอัลตราไวโอเลตและสภาพภูมิอากาศที่เกี่ยวข้องสำหรับการทดสอบผลิตภัณฑ์กลางแจ้ง หน้าที่หลักของอุปกรณ์นี้คือการจำลองผลกระทบของรังสีอัลตราไวโอเลตต่อวัสดุในสภาพแวดล้อมทางธรรมชาติ ผ่านการฉายรังสีอัลตราไวโอเลตที่ควบคุมด้วยเทียม การเปลี่ยนแปลงอุณหภูมิและความชื้น จึงทำการทดสอบที่ครอบคลุมและเป็นระบบเกี่ยวกับความทนทาน ความคงตัวของสี และคุณสมบัติทางกายภาพของวัสดุ ในช่วงไม่กี่ปีที่ผ่านมา ด้วยการพัฒนาเทคโนโลยีและการปรับปรุงข้อกำหนดด้านประสิทธิภาพของวัสดุอย่างต่อเนื่อง การใช้งานห้องทดสอบการผุกร่อนด้วยรังสีอัลตราไวโอเลตจึงแพร่หลายมากขึ้น ครอบคลุมหลากหลายสาขา เช่น พลาสติก สารเคลือบ และสิ่งทอระบบ Q8 ที่พัฒนาโดยห้องปฏิบัติการอิสระสามารถจำลองความเสียหายที่เกิดจากแสงแดดและฝน และสอดคล้องกับมาตรฐานการรับรองระดับสากลหลายฉบับ สามารถตั้งโปรแกรมให้ทำการทดสอบความทนทานต่อแสงอัลตราไวโอเลตและฝนอย่างต่อเนื่องตลอด 24 ชั่วโมง 7 วันต่อสัปดาห์ ใช้เวลาเพียงไม่กี่วันหรือสัปดาห์ในการจำลองความเสียหายที่เกิดขึ้นกลางแจ้งเป็นเวลาหลายเดือนหรือหลายปี รวมถึงปรากฏการณ์ต่างๆ เช่น การเปลี่ยนสีและการเกิดผง ในขณะเดียวกัน Q8/UV2/UV3 มาพร้อมกับระบบตรวจจับแสงอัลตราไวโอเลตมาตรฐาน ซึ่งควบคุมความเข้มของแสงได้อย่างแม่นยำ เซ็นเซอร์วัดความเข้มแสงอัลตราไวโอเลตสี่ชุดจะปรับพลังงานของหลอดไฟโดยอัตโนมัติตามอายุการใช้งานเพื่อชดเชย ช่วยลดระยะเวลาในการทดลองลงอย่างมากและรับประกันความสามารถในการทำซ้ำของระบบเพื่อจำลองผลกระทบของการกัดเซาะและระบายความร้อนด้วยน้ำฝนได้อย่างสมจริงยิ่งขึ้น ห้องทดสอบรังสีอัลตราไวโอเลตจึงติดตั้งระบบพ่นน้ำด้วย รุ่น Q8/UV3 มาพร้อมกับชุดพ่นน้ำ 12 ชุด เพื่อจำลองการกัดกร่อนเชิงกลที่เกิดจากการกัดเซาะของน้ำฝน เมื่อตัวอย่างได้รับความร้อนจนถึงอุณหภูมิสูงด้วยหลอดอัลตราไวโอเลต จะถูกพ่นด้วยน้ำเย็นเพื่อสร้างแรงดึงจากการหดตัวเนื่องจากความร้อนอย่างรุนแรง จำลองฝนตกหนักอย่างกะทันหันในฤดูร้อน ผลของการไหลของน้ำในการกัดเซาะสามารถจำลองการกัดกร่อนของสารเคลือบ สี และพื้นผิวอื่นๆ โดยน้ำฝน ชะล้างสารที่เสื่อมสภาพและเสื่อมสภาพบนพื้นผิว และเผยให้เห็นชั้นวัสดุใหม่เพื่อคงสภาพเดิมต่อไปวงจรทดสอบทั่วไปมีดังนี้:ภายใต้ความเข้มแสงที่กำหนดและอุณหภูมิสูง จะใช้แสงอัลตราไวโอเลตเป็นเวลา 4 ชั่วโมงเพื่อจำลองการได้รับแสงแดดในเวลากลางวัน เมื่อปิดไฟและรักษาระดับความชื้นสูงไว้ จำลองการควบแน่นเป็นเวลา 4 ชั่วโมงในเวลากลางคืน ในระหว่างกระบวนการนี้ สามารถฉีดพ่นสั้นๆ เป็นประจำเพื่อจำลองปริมาณน้ำฝนการเพิ่มความเข้มข้นและการหมุนเวียนปัจจัยสิ่งแวดล้อมที่สำคัญเหล่านี้ ห้องทดสอบแสงอัลตราไวโอเลต สามารถจำลองความเสียหายจากความเสื่อมสภาพของวัสดุที่ต้องใช้เวลาหลายเดือนหรือหลายปีเมื่อใช้งานกลางแจ้งได้ภายในไม่กี่วันหรือไม่กี่สัปดาห์ จึงนำไปใช้ในการควบคุมคุณภาพผลิตภัณฑ์และประเมินความทนทาน อย่างไรก็ตาม การทดสอบนี้เป็นการทดลองแบบเร่งรัด และผลลัพธ์จะสัมพันธ์กับการสัมผัสกลางแจ้งจริง มากกว่าที่จะเทียบเท่ากันโดยสิ้นเชิง วัสดุและมาตรฐานการทดสอบที่แตกต่างกันจะเลือกประเภทของหลอดไฟ ความเข้มแสง อุณหภูมิ และรอบการใช้งานที่แตกต่างกัน เพื่อให้ได้ผลลัพธ์การคาดการณ์ที่เกี่ยวข้องมากที่สุด
    อ่านเพิ่มเติม
  • จะเลือกวิธีการทำความเย็นที่เหมาะสมสำหรับห้องทดสอบได้อย่างไร?
    Sep 09, 2025
    การระบายความร้อนด้วยอากาศและการระบายความร้อนด้วยน้ำเป็นสองวิธีหลักในอุปกรณ์ทำความเย็น ความแตกต่างพื้นฐานที่สุดระหว่างทั้งสองวิธีอยู่ที่ตัวกลางที่แตกต่างกันที่ใช้ในการระบายความร้อนที่เกิดจากระบบออกสู่สภาพแวดล้อมภายนอก การระบายความร้อนด้วยอากาศอาศัยอากาศ ในขณะที่การระบายความร้อนด้วยน้ำอาศัยน้ำ ความแตกต่างหลักนี้ทำให้เกิดความแตกต่างมากมายระหว่างทั้งสองวิธี ทั้งในด้านการติดตั้ง การใช้งาน ต้นทุน และสถานการณ์การใช้งาน 1. ระบบระบายความร้อนด้วยอากาศหลักการทำงานของระบบระบายความร้อนด้วยอากาศคือการบังคับให้อากาศไหลผ่านพัดลม พัดผ่านครีบระบายความร้อน ซึ่งเป็นส่วนประกอบหลักที่ทำหน้าที่ระบายความร้อนภายในคอนเดนเซอร์ เพื่อนำความร้อนออกจากคอนเดนเซอร์และกระจายออกสู่อากาศโดยรอบ การติดตั้งนั้นง่ายและยืดหยุ่นมาก อุปกรณ์สามารถทำงานได้ง่ายๆ เพียงแค่เชื่อมต่อกับแหล่งจ่ายไฟ และไม่จำเป็นต้องใช้อุปกรณ์เพิ่มเติม จึงทำให้มีความต้องการต่ำที่สุดสำหรับการปรับปรุงพื้นที่ ประสิทธิภาพการระบายความร้อนนี้ได้รับผลกระทบอย่างมากจากอุณหภูมิแวดล้อม ในฤดูร้อนหรือสภาพแวดล้อมที่มีอุณหภูมิสูงและการระบายอากาศไม่ดี เนื่องจากความแตกต่างของอุณหภูมิระหว่างอากาศและคอนเดนเซอร์ที่ลดลง ประสิทธิภาพการระบายความร้อนจะลดลงอย่างมาก ส่งผลให้ความสามารถในการทำความเย็นของอุปกรณ์ลดลงและการใช้พลังงานในการทำงานเพิ่มขึ้น นอกจากนี้ ยังอาจมีเสียงรบกวนจากพัดลมจำนวนมากระหว่างการทำงาน การลงทุนเริ่มต้นมักจะต่ำ และการบำรุงรักษาประจำวันค่อนข้างง่าย ภารกิจหลักคือการทำความสะอาดฝุ่นบนครีบคอนเดนเซอร์เป็นประจำเพื่อให้การระบายอากาศเป็นไปอย่างราบรื่น ต้นทุนการดำเนินงานหลักคือการใช้ไฟฟ้า ระบบระบายความร้อนด้วยอากาศเหมาะอย่างยิ่งสำหรับอุปกรณ์ขนาดเล็กและขนาดกลาง พื้นที่ที่มีไฟฟ้ามากมายแต่มีทรัพยากรน้ำน้อยหรือการเข้าถึงน้ำที่ไม่สะดวก ห้องปฏิบัติการที่มีอุณหภูมิสิ่งแวดล้อมที่ควบคุมได้ ตลอดจนโครงการที่มีงบประมาณจำกัดหรือโครงการที่ต้องการกระบวนการติดตั้งง่ายและรวดเร็ว 2. ระบบระบายความร้อนด้วยน้ำหลักการทำงานของระบบระบายความร้อนด้วยน้ำคือการใช้น้ำหมุนเวียนที่ไหลผ่านคอนเดนเซอร์ระบายความร้อนด้วยน้ำโดยเฉพาะเพื่อดูดซับและนำความร้อนออกจากระบบ โดยทั่วไปแล้ว น้ำร้อนที่ไหลผ่านจะถูกลำเลียงไปยังหอหล่อเย็นภายนอกเพื่อระบายความร้อน แล้วจึงนำกลับมาใช้ใหม่ การติดตั้งมีความซับซ้อนและต้องใช้ระบบน้ำภายนอกที่ครบครัน ซึ่งรวมถึงหอหล่อเย็น ปั๊มน้ำ ระบบท่อน้ำ และอุปกรณ์บำบัดน้ำ ซึ่งไม่เพียงแต่กำหนดตำแหน่งการติดตั้งอุปกรณ์เท่านั้น แต่ยังต้องการการวางแผนพื้นที่และโครงสร้างพื้นฐานที่สูงมาก ประสิทธิภาพการระบายความร้อนของระบบมีเสถียรภาพสูง โดยพื้นฐานแล้วจะไม่ได้รับผลกระทบจากการเปลี่ยนแปลงของอุณหภูมิภายนอก ในขณะเดียวกัน เสียงรบกวนจากการทำงานใกล้ตัวเครื่องก็ค่อนข้างต่ำ การลงทุนเริ่มต้นจึงค่อนข้างสูง นอกจากการใช้ไฟฟ้าแล้ว ยังมีค่าใช้จ่ายอื่นๆ อีก เช่น การใช้ทรัพยากรน้ำอย่างต่อเนื่องระหว่างการใช้งานประจำวัน งานบำรุงรักษายังมีความซับซ้อนและเป็นมืออาชีพมากขึ้น ซึ่งจำเป็นต่อการป้องกันการเกิดตะกรัน การกัดกร่อน และการเจริญเติบโตของจุลินทรีย์ ระบบระบายความร้อนด้วยน้ำเหมาะกับอุปกรณ์ระดับอุตสาหกรรมขนาดใหญ่ที่มีกำลังไฟสูง โรงงานที่มีอุณหภูมิแวดล้อมสูงหรือสภาพการระบายอากาศไม่ดี ตลอดจนสถานการณ์ที่ต้องการความเสถียรของอุณหภูมิและประสิทธิภาพการทำความเย็นที่สูงมาก การเลือกระหว่างระบบระบายความร้อนด้วยอากาศและระบบระบายความร้อนด้วยน้ำไม่ได้ขึ้นอยู่กับการตัดสินว่าระบบใดเหนือกว่าหรือด้อยกว่ากันโดยสิ้นเชิง แต่เป็นการค้นหาโซลูชันที่เหมาะสมที่สุดกับสภาพการใช้งานเฉพาะด้าน การตัดสินใจควรพิจารณาจากปัจจัยต่อไปนี้ ประการแรก อุปกรณ์กำลังสูงขนาดใหญ่มักนิยมใช้ระบบระบายความร้อนด้วยน้ำเพื่อให้ประสิทธิภาพการทำงานมีเสถียรภาพ ในขณะเดียวกัน จำเป็นต้องประเมินสภาพภูมิอากาศของห้องปฏิบัติการ (ไม่ว่าจะเป็นอากาศร้อน) สภาพแหล่งจ่ายน้ำ พื้นที่ติดตั้ง และเงื่อนไขการระบายอากาศ ประการที่สอง หากการลงทุนเริ่มต้นค่อนข้างต่ำ ระบบระบายความร้อนด้วยอากาศก็เป็นตัวเลือกที่เหมาะสม หากมุ่งเน้นประสิทธิภาพการใช้พลังงานและเสถียรภาพในระยะยาว และไม่สนใจต้นทุนการก่อสร้างเริ่มต้นที่ค่อนข้างสูง ระบบระบายความร้อนด้วยน้ำก็มีข้อได้เปรียบมากกว่า สุดท้าย จำเป็นต้องพิจารณาว่าตนเองมีความสามารถระดับมืออาชีพในการบำรุงรักษาระบบน้ำที่ซับซ้อนเป็นประจำหรือไม่
    อ่านเพิ่มเติม
  • หลักการทำงานของเครื่องทำความเย็นแบบอัดอากาศระบายความร้อนด้วยอากาศ Lab Companion หลักการทำงานของเครื่องทำความเย็นแบบอัดอากาศระบายความร้อนด้วยอากาศ Lab Companion
    Sep 06, 2025
    1.การบีบอัดสารทำความเย็นที่เป็นก๊าซอุณหภูมิต่ำและความดันต่ำจะไหลออกจากเครื่องระเหยและถูกคอมเพรสเซอร์ดูดเข้าไป คอมเพรสเซอร์จะทำงานกับก๊าซส่วนนี้ (ใช้พลังงานไฟฟ้า) และบีบอัดอย่างรุนแรง เมื่อสารทำความเย็นเปลี่ยนเป็นไอร้อนยวดยิ่งที่มีอุณหภูมิสูงและความดันสูง อุณหภูมิของไอจะสูงกว่าอุณหภูมิแวดล้อมมาก ทำให้เกิดสภาวะที่ความร้อนจะถูกระบายออกสู่ภายนอก2. การควบแน่นไอสารทำความเย็นอุณหภูมิสูงและแรงดันสูงจะเข้าสู่คอนเดนเซอร์ (โดยปกติจะเป็นตัวแลกเปลี่ยนความร้อนแบบท่อครีบที่ประกอบด้วยท่อทองแดงและครีบอะลูมิเนียม) พัดลมจะบังคับให้อากาศภายนอกพัดผ่านครีบคอนเดนเซอร์ จากนั้นไอสารทำความเย็นจะปล่อยความร้อนให้กับอากาศที่ไหลอยู่ภายในคอนเดนเซอร์ เนื่องจากการระบายความร้อน ไอสารทำความเย็นจะค่อยๆ ควบแน่นจากสถานะก๊าซไปเป็นของเหลวที่มีอุณหภูมิปานกลางและแรงดันสูง ณ จุดนี้ ความร้อนจะถูกถ่ายโอนจากระบบทำความเย็นไปยังสภาพแวดล้อมภายนอก3. การขยายตัวสารทำความเย็นเหลวที่มีอุณหภูมิปานกลางและแรงดันสูงจะไหลผ่านช่องแคบผ่านอุปกรณ์ควบคุมแรงดัน ซึ่งทำหน้าที่ควบคุมและลดแรงดัน คล้ายกับการใช้นิ้วปิดรูท่อน้ำ เมื่อแรงดันของสารทำความเย็นลดลงอย่างกะทันหัน อุณหภูมิก็จะลดลงอย่างรวดเร็วเช่นกัน กลายเป็นส่วนผสมสองเฟสของก๊าซและของเหลวที่มีอุณหภูมิต่ำและความดันต่ำ (หมอก)4. การระเหยส่วนผสมของก๊าซและของเหลวที่มีอุณหภูมิต่ำและความดันต่ำจะเข้าสู่เครื่องระเหย และพัดลมอีกตัวหนึ่งจะหมุนเวียนอากาศภายในกล่องผ่านครีบของเครื่องระเหยที่เย็น ของเหลวสารทำความเย็นจะดูดซับความร้อนของอากาศที่ไหลผ่านครีบในเครื่องระเหย ระเหยและกลายเป็นไออย่างรวดเร็ว และเปลี่ยนกลับเป็นก๊าซอุณหภูมิต่ำและความดันต่ำ เนื่องจากการดูดซับความร้อน อุณหภูมิของอากาศที่ไหลผ่านเครื่องระเหยจึงลดลงอย่างมาก ส่งผลให้ห้องทดสอบเย็นลง จากนั้น ก๊าซอุณหภูมิต่ำและความดันต่ำนี้จะถูกดึงกลับเข้าไปในคอมเพรสเซอร์อีกครั้ง เพื่อเริ่มต้นวงจรถัดไป ด้วยวิธีนี้ วงจรจะวนซ้ำไปซ้ำมาอย่างไม่มีที่สิ้นสุด ระบบทำความเย็นจะ "เคลื่อนย้าย" ความร้อนภายในกล่องออกสู่ภายนอกอย่างต่อเนื่อง และกระจายความร้อนออกสู่บรรยากาศผ่านพัดลม
    อ่านเพิ่มเติม
  • คู่มือการบำรุงรักษาเตาอบอุณหภูมิสูง คู่มือการบำรุงรักษาเตาอบอุณหภูมิสูง
    Sep 05, 2025
    1. การบำรุงรักษาประจำวันขั้นแรก ให้ทำความสะอาดภายในกล่องเพื่อกำจัดสิ่งปนเปื้อนตกค้างจากการทดสอบ (เช่น ฝุ่นและเศษตัวอย่าง) เพื่อป้องกันไม่ให้สิ่งปนเปื้อนเหล่านี้กัดกร่อนวัสดุบุภายในหรือปนเปื้อนตัวอย่างทดสอบถัดไป หลังจากกล่องเย็นลงอย่างสมบูรณ์แล้ว ให้เช็ดวัสดุบุภายใน ชั้นวาง และผนังด้านในด้วยผ้าแห้งนุ่มๆประการที่สอง ทำความสะอาดภายนอกกล่องเพื่อป้องกันฝุ่นอุดตันช่องระบายอากาศและส่งผลต่อการระบายความร้อน โดยเฉพาะบริเวณรอบช่องระบายอากาศ โปรดตรวจสอบให้แน่ใจว่าไม่มีฝุ่นสะสมประการที่สาม ตรวจสอบว่าแถบปิดผนึกของประตูกล่องเรียบ ไม่มีรอยแตกหรือเสียรูป แถบปิดผนึกที่เสื่อมสภาพหรือเสื่อมสภาพอาจทำให้เกิดการรั่วไหลของความร้อนและความสม่ำเสมอของอุณหภูมิลดลงประการที่สี่ ให้ทำการล้างกล่อง: การล้างกล่องหลังใช้งานจะช่วยป้องกันไม่ให้สิ่งของที่ไม่เกี่ยวข้องถูกเก็บไว้ในกล่องเป็นเวลานาน ซึ่งอาจทำให้เกิดการปนเปื้อนหรือเกิดอุบัติเหตุได้ 2.การบำรุงรักษาตามปกติโปรดตัดกระแสไฟฟ้าก่อนทำความสะอาดแผ่นทำความร้อน! รอให้อุปกรณ์เย็นลงสนิท เปิดแผ่นปิดด้านหลังและปัดฝุ่นออกจากผิวท่อทำความร้อนไฟฟ้าและท่อลมเบาๆ ด้วยเครื่องดูดฝุ่นหรือแปรงขนนุ่มตรวจสอบและทำความสะอาดพัดลม/ใบพัด ฝุ่นละอองที่สะสมบนพัดลมอาจทำให้เกิดความไม่สมดุลของไดนามิก ซึ่งส่งผลกระทบอย่างรุนแรงต่อความสม่ำเสมอของอุณหภูมิ ดังนั้น หลังจากตัดกระแสไฟฟ้าแล้ว จำเป็นต้องตรวจสอบว่ามีเสียงผิดปกติจากลูกปืนของมอเตอร์พัดลมหรือไม่ และใช้เครื่องดูดฝุ่นทำความสะอาดฝุ่นที่สะสมบนใบพัด ผู้ดูแลอุปกรณ์มืออาชีพควรตรวจสอบอุปกรณ์ไฟฟ้าว่ามีรอยหลวม ไหม้ หรือเป็นสนิมบนสายไฟ เบรกเกอร์วงจร คอนแทคเตอร์ และชุดขั้วต่ออื่นๆ หรือไม่ ขันขั้วที่หลวมให้แน่นและเปลี่ยนชิ้นส่วนที่เสียหาย เพื่อความปลอดภัยและความน่าเชื่อถือของการเชื่อมต่อไฟฟ้าความแม่นยำของเซ็นเซอร์วัดอุณหภูมิสามารถกำหนดความสำเร็จหรือความล้มเหลวของการทดสอบได้โดยตรง ขอแนะนำให้ใช้เทอร์โมมิเตอร์มาตรฐานที่ผ่านการสอบเทียบทางมาตรวิทยาทุกหกเดือนหรือปีละครั้ง เพื่อสอบเทียบเปรียบเทียบช่วงอุณหภูมิการทำงานของอุปกรณ์แบบหลายจุด หากตรวจพบความคลาดเคลื่อน ควรแก้ไขพารามิเตอร์หรือเปลี่ยนเซ็นเซอร์ในระบบควบคุมทำความสะอาดระบบความชื้น หากอุปกรณ์ของคุณมีฟังก์ชันควบคุมความชื้น คุณจำเป็นต้องทำความสะอาดถาดน้ำสำหรับควบคุมความชื้นเป็นประจำ เปลี่ยนผ้าเปียกเพื่อป้องกันการเกิดตะกรันและตะไคร่น้ำ และใช้น้ำปราศจากไอออนหรือน้ำบริสุทธิ์เพื่อลดตะกรัน 3. การบำรุงรักษาระยะยาวหลังจากการหยุดใช้งานขั้นแรกให้ทำความสะอาดทั้งภายในและภายนอกกล่องให้ทั่ว จากนั้นจึงคลุมอุปกรณ์ทั้งหมดด้วยฝาครอบป้องกันฝุ่นประการที่สอง ขอแนะนำให้เปิดเครื่องและใช้งานอุปกรณ์เป็นเวลาครึ่งชั่วโมงถึงหนึ่งชั่วโมงโดยไม่มีโหลดอย่างน้อยเดือนละครั้ง วิธีนี้จะช่วยขจัดความชื้นภายในกล่อง ช่วยให้ส่วนประกอบไฟฟ้าทำงานได้อย่างต่อเนื่อง ป้องกันไม่ให้เกิดความเสียหายจากความชื้น และช่วยหล่อลื่นชิ้นส่วนกลไกสุดท้ายนี้ ในระหว่างช่วงที่ไม่ได้เปิดเครื่อง ขอแนะนำให้ตัดแหล่งจ่ายไฟหลักโดยสมบูรณ์เพื่อความปลอดภัยและประหยัดการใช้พลังงานในโหมดสแตนด์บาย โปรดจำไว้เสมอว่าความปลอดภัยต้องมาก่อนเสมอในการดำเนินการข้างต้น การนำแผนการบำรุงรักษาอย่างเป็นระบบมาใช้จะช่วยยืดอายุการใช้งานของ เตาอบอุณหภูมิสูงเพื่อให้แน่ใจว่าข้อมูลการทดสอบมีความแม่นยำและสามารถทำซ้ำได้ และลดความถี่ของความล้มเหลวของอุปกรณ์และต้นทุนการบำรุงรักษา
    อ่านเพิ่มเติม
  • หลักการทำงานของเตาสุญญากาศ Lab Companion หลักการทำงานของเตาสุญญากาศ Lab Companion
    Sep 02, 2025
    เตาอบสุญญากาศ Lab Companion เป็นอุปกรณ์ที่มีความแม่นยำสูงสำหรับการอบแห้งวัสดุภายใต้สภาวะความดันต่ำ หลักการทำงานอิงหลักการทางวิทยาศาสตร์หลักที่ว่า ในสภาวะสุญญากาศ จุดเดือดของของเหลวจะลดลงอย่างมาก กระบวนการทำงานสามารถแบ่งได้เป็น 3 ส่วนหลัก ได้แก่ 1. การสร้างสุญญากาศ: ด้วยการดูดอากาศออกจากห้องอบอย่างต่อเนื่องผ่านชุดปั๊มสุญญากาศ สภาพแวดล้อมภายในจะลดลงจนต่ำกว่าความดันบรรยากาศมาก (โดยทั่วไปสูงถึง 10 ปาสกาล หรือสูงกว่า) กระบวนการนี้บรรลุวัตถุประสงค์สองประการ ประการแรก คือ ช่วยลดปริมาณออกซิเจนในโพรงอย่างมาก ป้องกันไม่ให้วัสดุเกิดการออกซิไดซ์ระหว่างกระบวนการให้ความร้อน ประการที่สอง คือ การสร้างเงื่อนไขสำหรับกระบวนการทางกายภาพหลัก นั่นคือ การเดือดที่อุณหภูมิต่ำ2. การให้ความร้อนให้พลังงาน: ทันทีที่สภาวะสุญญากาศถูกสร้างขึ้น ระบบทำความร้อน (โดยปกติจะใช้ลวดทำความร้อนไฟฟ้าหรือแผ่นทำความร้อน) จะเริ่มทำงาน โดยให้พลังงานความร้อนแก่วัสดุภายในห้อง เนื่องจากความดันภายในที่ต่ำมาก จุดเดือดของความชื้นหรือตัวทำละลายอื่นๆ ที่มีอยู่ในวัสดุจึงลดลงอย่างรวดเร็ว ตัวอย่างเช่น ที่ระดับสุญญากาศ -0.085 MPa จุดเดือดของน้ำจะลดลงเหลือประมาณ 45 องศาเซลเซียส ซึ่งหมายความว่าวัสดุไม่จำเป็นต้องได้รับความร้อนถึง 100 องศาเซลเซียสตามปกติ และความชื้นภายในสามารถระเหยได้อย่างรวดเร็วที่อุณหภูมิต่ำกว่า3. การกำจัดไอน้ำ: ไอน้ำหรือไอระเหยตัวทำละลายอื่นๆ ที่เกิดจากการระเหยจะถูกปล่อยออกมาจากพื้นผิวและภายในวัสดุ เนื่องจากความแตกต่างของความดันภายในโพรง ไอระเหยเหล่านี้จะแพร่กระจายอย่างรวดเร็วและถูกดูดออกอย่างต่อเนื่องโดยปั๊มสุญญากาศ จากนั้นจึงถูกปล่อยออกสู่ภายนอก กระบวนการนี้ดำเนินไปอย่างต่อเนื่อง เพื่อรักษาสภาพแวดล้อมให้แห้งและป้องกันไม่ให้ไอน้ำควบแน่นภายในโพรง ส่งผลให้ปฏิกิริยาการอบแห้งดำเนินไปอย่างต่อเนื่องและมีประสิทธิภาพจนถึงขั้นสูญเสียน้ำ คุณสมบัติ "การอบแห้งที่อุณหภูมิต่ำและประสิทธิภาพสูง" ของเตาสุญญากาศทำให้มีการใช้กันอย่างแพร่หลายในสาขาเภสัชกรรม สารเคมี อุปกรณ์อิเล็กทรอนิกส์ อาหาร และวิทยาศาสตร์วัสดุ โดยเหมาะอย่างยิ่งสำหรับการแปรรูปวัสดุที่มีค่า บอบบาง หรือแห้งยากด้วยวิธีการทั่วไป
    อ่านเพิ่มเติม
  • การประยุกต์ใช้ห้องทดสอบอุณหภูมิสูงและต่ำในการวิจัยวัสดุพลังงานใหม่ การประยุกต์ใช้ห้องทดสอบอุณหภูมิสูงและต่ำในการวิจัยวัสดุพลังงานใหม่
    Aug 30, 2025
    1. แบตเตอรี่ลิเธียมไอออน: การทดสอบอุณหภูมิสูงและต่ำจะดำเนินการผ่านทุกขั้นตอนการวิจัยและพัฒนาของแบตเตอรี่ลิเธียมไอออน ตั้งแต่วัสดุ เซลล์ไปจนถึงโมดูล 2. ระดับวัสดุ: ประเมินคุณสมบัติทางกายภาพและเคมีพื้นฐานของวัสดุพื้นฐาน เช่น วัสดุอิเล็กโทรดบวกและลบ อิเล็กโทรไลต์ และสารแยกที่อุณหภูมิต่างๆ เช่น การทดสอบความเสี่ยงต่อการชุบลิเธียมของวัสดุแอโนดที่อุณหภูมิต่ำ หรือการตรวจสอบอัตราการหดตัวเนื่องจากความร้อน (MSDS) ของสารแยกที่อุณหภูมิสูง 3. ระดับเซลล์: จำลองสภาพฤดูหนาวที่หนาวเย็นในเขตหนาวจัด (เช่น -40 ถึง -20 องศาเซลเซียส) ทดสอบการสตาร์ท ความจุ และอัตราการคายประจุของแบตเตอรี่ที่อุณหภูมิต่ำ และให้ข้อมูลสนับสนุนเพื่อปรับปรุงประสิทธิภาพการทำงานที่อุณหภูมิต่ำ การทดสอบการชาร์จและคายประจุแบบวนรอบจะดำเนินการที่อุณหภูมิสูง (เช่น 45 องศาเซลเซียส และ 60 องศาเซลเซียส) เพื่อเร่งอายุการใช้งานและคาดการณ์อายุการใช้งานและอัตราการคงความจุของแบตเตอรี่ในระยะยาว 4. เซลล์เชื้อเพลิง: เซลล์เชื้อเพลิงแบบเมมเบรนแลกเปลี่ยนโปรตอน (PEMFC) มีข้อกำหนดที่เข้มงวดมากสำหรับการจัดการน้ำและความร้อน ความสามารถในการสตาร์ทแบบเย็นถือเป็นปัญหาทางเทคนิคที่สำคัญสำหรับการนำเซลล์เชื้อเพลิงออกสู่ตลาด ห้องทดสอบจะจำลองสภาพแวดล้อมที่ต่ำกว่าจุดเยือกแข็ง (เช่น -30℃) เพื่อทดสอบว่าระบบสามารถสตาร์ทได้สำเร็จหรือไม่หลังจากการแช่แข็ง และเพื่อศึกษาความเสียหายเชิงกลของผลึกน้ำแข็งต่อชั้นตัวเร่งปฏิกิริยาและเมมเบรนแลกเปลี่ยนโปรตอน 5. วัสดุโซลาร์เซลล์: แผงโซลาร์เซลล์ต้องใช้งานกลางแจ้งนานกว่า 25 ปี ทนทานต่อการทดสอบอันหนักหน่วงทั้งกลางวันและกลางคืน รวมถึงสภาพอากาศทั้งสี่ฤดู ด้วยการจำลองความแตกต่างของอุณหภูมิระหว่างกลางวันและกลางคืน (เช่น 200 รอบ ตั้งแต่ -40°C ถึง 85°C) จะสามารถทดสอบความล้าทางความร้อนของเทปบัดกรีที่เชื่อมต่อระหว่างเซลล์แบตเตอรี่ ความเสื่อมสภาพและสีเหลืองของวัสดุหุ้ม (EVA/POE) และความน่าเชื่อถือในการยึดติดระหว่างวัสดุลามิเนตชนิดต่างๆ เพื่อป้องกันการแยกชั้นและความเสียหาย   ห้องทดสอบอุณหภูมิสูงและต่ำที่ทันสมัย ไม่ใช่ห้องทดสอบการเปลี่ยนแปลงอุณหภูมิแบบธรรมดาอีกต่อไป แต่เป็นแพลตฟอร์มทดสอบอัจฉริยะที่ผสานรวมฟังก์ชันต่างๆ ไว้ด้วยกัน ห้องทดสอบขั้นสูงนี้มาพร้อมกับหน้าต่างสังเกตการณ์และช่องทดสอบ ช่วยให้นักวิจัยสามารถตรวจสอบตัวอย่างได้แบบเรียลไทม์ระหว่างการเปลี่ยนแปลงอุณหภูมิ
    อ่านเพิ่มเติม
  • ระบบทดสอบการทำงานและการบ่มที่อุณหภูมิสูงและต่ำระบายความร้อนด้วยน้ำ OVEN-256-10W
    Aug 20, 2025
    เตาอบ-256-10 วัตต์ เป็นระบบทดสอบความหนาแน่นสูงที่ออกแบบมาเพื่อตอบสนองข้อกำหนดการทดสอบประสิทธิภาพที่เข้มงวดของ NVMe SSD ซึ่งสามารถทดสอบไดรฟ์ได้พร้อมกันสูงสุด 256 ตัว ทำงานในช่วงอุณหภูมิ -10°C ถึง 85°C และรองรับอินเทอร์เฟซ PCIe Gen5 x4 ล่าสุด ควบคู่ไปกับข้อกำหนดโปรโตคอล NVMe Ver2.0 ช่องทดสอบแต่ละช่องมีการควบคุมแรงดันไฟฟ้าของแหล่งจ่ายไฟ SSD ได้อย่างอิสระ รวมถึงการกำหนดขอบเขตแรงดันไฟฟ้าตั้งแต่ 0V ถึง 14.5V ระบบนี้สร้างขึ้นบนกรอบการทำงานที่ครบถ้วนสำหรับการทดสอบการผลิต SSD ระบบนี้ให้การสนับสนุนที่ครอบคลุมสำหรับการทดสอบนำร่องเพื่อการวิจัยและพัฒนา ซึ่งรวมถึง EVT, DVT และ PVT รวมถึงการทดสอบคุณภาพและความน่าเชื่อถือสำหรับการผลิตจำนวนมาก เช่น MP, ORT และ ODT การทำงานที่ใช้งานง่ายและการกำหนดค่าที่ยืดหยุ่นสูง ช่วยเพิ่มประสิทธิภาพการผลิตและคุณภาพของผลิตภัณฑ์ขั้นสุดท้ายในการผลิต SSD ได้อย่างมาก คุณสมบัติผลิตภัณฑ์ช่วงการควบคุมอุณหภูมิ: -10°C ถึง 85°C;อัตราการเปลี่ยนแปลงอุณหภูมิ: 1°C ต่อ 1 นาที;รองรับ PCIe Gen5 x4;สามารถควบคุมแรงดันไฟฟ้าของพอร์ตทดสอบแต่ละพอร์ตได้ผ่านการเขียนโปรแกรมสคริปต์ โดยมีช่วงที่ปรับได้ตั้งแต่ 0.6V – 14.5V และความแม่นยำในการควบคุมที่ 1mVเข้ากันได้กับโปรโตคอล NVMe Ver2.0 ล่าสุดและรองรับคำสั่ง NVMe ที่ผู้ใช้กำหนดไลบรารีสคริปต์ที่ครอบคลุมและระบบวิเคราะห์ฐานข้อมูลอันทรงพลังซอฟต์แวร์ LTWolf รองรับคุณลักษณะที่กำหนดเองเพิ่มเติมตามความต้องการของลูกค้าการบูรณาการที่ราบรื่นกับระบบ MES ของลูกค้า พร้อมการปรับแต่งตามต้องการสำหรับระบบการจัดการข้อมูลการผลิตการออกแบบการป้องกันไฟร์วอลล์ช่วยแยกวงจรการทดสอบและอุปกรณ์ที่อยู่ระหว่างการทดสอบ (DUT) ออกจากกันอย่างสมบูรณ์อัลกอริทึมการทดสอบที่ครอบคลุมและผ่านการพิสูจน์แล้ว รวมถึง EVT, DVT, RDT, TVM และอื่นๆ
    อ่านเพิ่มเติม
  • มาตรฐานการจัดส่งสำหรับผลิตภัณฑ์ Lab Companion
    Aug 07, 2025
    ข้อควรพิจารณาหลักสำหรับการส่งมอบอุปกรณ์เพื่อให้แน่ใจว่าการดำเนินการในสถานที่เหมาะสม:1. การติดตั้งและทดสอบอุปกรณ์บริษัทของเราดูแลการขนส่งและการเชื่อมต่อไฟฟ้าของอุปกรณ์ เพื่อให้มั่นใจว่าอุปกรณ์จะทำงานได้อย่างถูกต้อง ณ สถานที่ของลูกค้า การติดตั้งทั้งหมดเป็นไปตามเกณฑ์การยอมรับมาตรฐานอย่างเคร่งครัด ห้องทดสอบสิ่งแวดล้อมเราดำเนินการตรวจสอบโดยบุคคลที่สามอย่างสม่ำเสมอเพื่อรับประกันการปฏิบัติตามมาตรฐานอุตสาหกรรมอย่างต่อเนื่อง หากลูกค้าต้องการรายงานการตรวจสอบหลังจากรับสินค้าแล้ว เราสามารถจัดหาหน่วยงานบุคคลที่สามที่ได้รับการรับรองมาดำเนินการทดสอบ ณ สถานที่ได้ 2. ระบบฝึกอบรมทางเทคนิคสำหรับลูกค้า2.1 การฝึกอบรมการปฏิบัติการขั้นพื้นฐานการฝึกอบรมครอบคลุมขั้นตอนการสตาร์ท/ปิดเครื่องอุปกรณ์ การกำหนดค่าโปรแกรมทดสอบ และขั้นตอนการบำรุงรักษาตามปกติ โปรแกรมการฝึกอบรมนี้ได้รับการปรับแต่งให้เหมาะสมกับสถานการณ์การทำงานเฉพาะตามอุตสาหกรรมของผู้ใช้ (เช่น สถาบันทดสอบจากภายนอก ผู้ผลิตยานยนต์) 2.2 การฝึกอบรมการบำรุงรักษาขั้นสูงโปรแกรมนี้มุ่งเน้นการพัฒนาความสามารถในการแก้ไขปัญหาและซ่อมแซมของผู้ใช้ รวมถึงการวินิจฉัยความล้มเหลวของระบบความชื้นใน ห้องทดสอบอุณหภูมิและความชื้นการฝึกอบรมรวมถึงขั้นตอนการเปลี่ยนส่วนประกอบสำคัญและข้อควรระวังเพื่อสร้างระบบความสามารถในการบำรุงรักษาที่เป็นอิสระ 3. โปรโตคอลบริการสนับสนุนด้านเทคนิค3.1 กลไกการตอบสนองฉุกเฉินกระบวนการตอบสนองข้อบกพร่องที่ได้มาตรฐานช่วยให้มั่นใจได้ว่าการสนับสนุนทางเทคนิคจะเริ่มต้นภายใน 2 ชั่วโมงหลังจากได้รับคำขอรับบริการ ข้อบกพร่องที่พบบ่อยจะได้รับการแก้ไขภายใน 48 ชั่วโมง (โดยมีการเจรจาหาแนวทางแก้ไขอื่นๆ สำหรับพื้นที่ห่างไกล) 3.2 การสนับสนุนทางเทคนิคระยะไกลมีระบบวินิจฉัยระยะไกลแบบมืออาชีพ การสื่อสารวิดีโอแบบเรียลไทม์ หรือการเข้าถึงซอฟต์แวร์เฉพาะ ช่วยให้ระบุข้อผิดพลาดได้อย่างรวดเร็ว 4. การจัดหาอะไหล่และการรับประกันการบำรุงรักษา4.1 แผนการจัดการอะไหล่เพื่อเพิ่มประสิทธิภาพในการสนับสนุนหลังการขาย เราจึงจัดตั้งคลังอะไหล่เฉพาะสำหรับผู้ซื้อที่มีปริมาณมากและลูกค้าประจำ ช่วยให้สามารถตอบสนองความต้องการด้านบริการได้อย่างรวดเร็ว ลูกค้าแต่ละรายจะได้รับโปรไฟล์เฉพาะเพื่อจัดสรรทรัพยากรอย่างเหมาะสมที่สุดช่องทางการจัดหาที่สำคัญจะถูกสงวนไว้สำหรับพันธมิตรที่สำคัญ (เช่น CRCC, CETC) เพื่อให้แน่ใจว่าการส่งมอบชิ้นส่วนอะไหล่จะรวดเร็วขึ้นเพื่อลดระยะเวลาหยุดทำงานของอุปกรณ์ให้เหลือน้อยที่สุด 4.2 นโยบายการบริการบำรุงรักษาบริการซ่อมฟรีสำหรับความเสียหายที่ไม่ได้เกิดจากมนุษย์ในช่วงระยะเวลารับประกัน บริการบำรุงรักษาหลังการรับประกันเป็นไปตามระบบราคาที่โปร่งใส พร้อมแผนการซ่อมโดยละเอียดและประมาณการค่าใช้จ่ายที่แจ้งไว้ล่วงหน้าบริษัทของเรามีทีมบริการหลังการขายที่เป็นมืออาชีพ และมุ่งมั่นที่จะพัฒนาความเชี่ยวชาญทางเทคนิคของบุคลากรฝ่ายบริการอย่างต่อเนื่อง เราคาดว่าจะสามารถให้บริการสนับสนุนนอกสถานที่แก่ลูกค้าต่างประเทศได้ในอนาคตอันใกล้นี้
    อ่านเพิ่มเติม
1 2 3 4 5 6 7 8 9 10 19 20
รวมทั้งหมด20หน้า

ฝากข้อความ

ฝากข้อความ
หากคุณสนใจผลิตภัณฑ์ของเราและต้องการทราบรายละเอียดเพิ่มเติม โปรดฝากข้อความไว้ที่นี่ เราจะตอบกลับคุณโดยเร็วที่สุด
ส่ง

บ้าน

สินค้า

วอทส์แอพพ์

ติดต่อเรา