แบนเนอร์
บ้าน

เตาอบแห้ง

เอกสารสำคัญ
แท็ก

เตาอบแห้ง

  • ดูดฝุ่นก่อนแล้วจึงให้ความร้อน: การทำงานของเตาอบแห้งที่ถูกต้อง
    Feb 28, 2025
    เหตุใดคุณจึงควรอพยพก่อนทำความร้อนใน เครื่องอบสูญญากาศ? 1) ปกป้องปั๊มสุญญากาศ:หากคุณทำการอุ่นเตาอบก่อนทำการดูดอากาศออก อากาศที่ได้รับความร้อนจะถูกดูดออกโดยปั๊มสุญญากาศ กระบวนการนี้จะถ่ายเทความร้อนไปยังปั๊ม ซึ่งอาจทำให้ปั๊มร้อนเกินไปได้ หากร้อนเกินไปอาจลดประสิทธิภาพของปั๊มสุญญากาศลงและอาจทำให้ปั๊มเสียหายได้ 2) การป้องกันความเสียหายต่อเกจวัดสุญญากาศ:หากทำการอุ่นเตาอบก่อน อากาศที่ได้รับความร้อนจะถูกส่งไปยังเกจวัดสุญญากาศ และทำให้เครื่องมือนี้ร้อนเกินไป หากอุณหภูมิเกินขีดจำกัดการทำงานของเกจวัด อาจทำให้ค่าที่อ่านได้ไม่ถูกต้องหรือเกิดความเสียหายถาวร 3)การหลีกเลี่ยงอันตรายด้านความปลอดภัย:วัสดุที่ทดสอบจะถูกวางไว้ในห้องสูญญากาศที่สามารถกำจัดก๊าซที่ถูกสกัดออกจากวัสดุได้ หากวัสดุที่ทดสอบถูกให้ความร้อนก่อน ก๊าซจะขยายตัวเมื่อสัมผัสกับความร้อน เนื่องจากการปิดผนึกที่ยอดเยี่ยมของห้องสูญญากาศ แรงดันมหาศาลที่เกิดจากก๊าซที่ขยายตัวอาจทำให้กระจกนิรภัยของหน้าต่างสังเกตการณ์แตกได้ ขั้นตอนที่ถูกต้องคือการระบายอากาศออกก่อนแล้วจึงทำความร้อน หากระดับสุญญากาศลดลงหลังจากถึงอุณหภูมิที่ต้องการ คุณสามารถระบายอากาศออกอีกครั้งได้ชั่วครู่ วิธีนี้ช่วยยืดอายุการใช้งานของอุปกรณ์ บทสรุป:เพื่อความปลอดภัย รักษาประสิทธิภาพของอุปกรณ์ และยืดอายุการใช้งานของเตาอบสุญญากาศ ควรปฏิบัติตามขั้นตอนที่ถูกต้องเสมอ นั่นคือ ระบายอากาศออกก่อน จากนั้นจึงให้ความร้อน ขั้นตอนง่ายๆ นี้สามารถป้องกันอันตรายที่อาจเกิดขึ้นและความเสียหายที่มีค่าใช้จ่ายสูงได้ 
    อ่านเพิ่มเติม
  • การทดสอบการเบิร์นอิน การทดสอบการเบิร์นอิน
    Nov 27, 2024
    การทดสอบการเบิร์นอินการทดสอบการเบิร์นอิน เป็นกระบวนการที่ระบบตรวจจับความผิดพลาดในระยะเริ่มต้นของส่วนประกอบเซมิคอนดักเตอร์ (การเสียชีวิตของทารก) ส่งผลให้ส่วนประกอบเซมิคอนดักเตอร์มีความน่าเชื่อถือมากขึ้น โดยปกติแล้ว การทดสอบเบิร์นอินจะดำเนินการกับอุปกรณ์อิเล็กทรอนิกส์ เช่น ไดโอดเลเซอร์ที่มีระบบเบิร์นอินไดโอดเลเซอร์ของอุปกรณ์ทดสอบอัตโนมัติ ซึ่งจะรันส่วนประกอบเป็นระยะเวลานานเพื่อตรวจจับปัญหาระบบเบิร์นอินจะใช้เทคโนโลยีล้ำสมัยเพื่อทดสอบส่วนประกอบ และให้การควบคุมอุณหภูมิที่แม่นยำ กำลังไฟ และการวัดแสง (ถ้าจำเป็น) เพื่อให้แน่ใจถึงความแม่นยำและความน่าเชื่อถือที่จำเป็นสำหรับการผลิต การประเมินทางวิศวกรรม และการใช้งาน R&Dการทดสอบเบิร์นอินอาจดำเนินการเพื่อให้แน่ใจว่าอุปกรณ์หรือระบบทำงานอย่างถูกต้องก่อนออกจากโรงงานผลิต หรือเพื่อยืนยันว่าเซมิคอนดักเตอร์ใหม่จากห้องปฏิบัติการ R&D เป็นไปตามข้อกำหนดการปฏิบัติงานที่ได้รับการออกแบบไว้การเบิร์นอินที่ระดับส่วนประกอบจะดีที่สุดเมื่อต้นทุนการทดสอบและการเปลี่ยนชิ้นส่วนต่ำที่สุด การเบิร์นอินบอร์ดหรือชุดประกอบทำได้ยากเนื่องจากส่วนประกอบแต่ละชิ้นมีขีดจำกัดที่แตกต่างกันสิ่งสำคัญที่ต้องทราบคือ การทดสอบเบิร์นอินมักใช้เพื่อกรองอุปกรณ์ที่ล้มเหลวระหว่าง "ระยะการเสียชีวิตของทารก" (จุดเริ่มต้นของเส้นโค้งการอาบน้ำ) และไม่คำนึงถึง "อายุการใช้งาน" หรือการสึกหรอ (จุดสิ้นสุดของเส้นโค้งการอาบน้ำ) ซึ่งเป็นจุดที่การทดสอบความน่าเชื่อถือเข้ามามีบทบาทการสึกหรอหมายถึงการสิ้นสุดอายุการใช้งานตามธรรมชาติของส่วนประกอบหรือระบบซึ่งเกี่ยวข้องกับการใช้งานอย่างต่อเนื่องอันเป็นผลจากปฏิสัมพันธ์ของวัสดุกับสิ่งแวดล้อม ความล้มเหลวนี้ถือเป็นข้อกังวลโดยเฉพาะในการระบุอายุการใช้งานของผลิตภัณฑ์ เราสามารถอธิบายการสึกหรอทางคณิตศาสตร์ได้ โดยอาศัยแนวคิดเรื่องความน่าเชื่อถือ และด้วยเหตุนี้ จึงสามารถคาดการณ์อายุการใช้งานได้อะไรเป็นสาเหตุที่ทำให้ส่วนประกอบล้มเหลวระหว่างการเบิร์นอิน?สาเหตุของความล้มเหลวที่ตรวจพบระหว่างการทดสอบเบิร์นอินสามารถระบุได้ว่าเป็นความล้มเหลวของฉนวนไฟฟ้า ความล้มเหลวของตัวนำ ความล้มเหลวของโลหะ การย้ายอิเล็กโทรไมเกรชั่น เป็นต้น ข้อผิดพลาดเหล่านี้เกิดขึ้นโดยไม่ได้ใช้งานและแสดงออกมาแบบสุ่มเป็นความล้มเหลวของอุปกรณ์ตลอดวงจรชีวิตของอุปกรณ์ ด้วยการทดสอบเบิร์นอิน อุปกรณ์ทดสอบอัตโนมัติ (ATE) จะทำให้อุปกรณ์ทำงานหนักขึ้น ส่งผลให้ข้อผิดพลาดที่ไม่ได้ใช้งานเหล่านี้แสดงออกมาในรูปแบบความล้มเหลวและคัดกรองความล้มเหลวออกไปในระยะที่ทารกเสียชีวิตการทดสอบการเบิร์นอินจะตรวจจับข้อบกพร่องที่โดยทั่วไปแล้วเกิดจากความไม่สมบูรณ์แบบในกระบวนการผลิตและบรรจุภัณฑ์ ซึ่งเกิดขึ้นบ่อยมากขึ้นเนื่องจากความซับซ้อนของวงจรที่เพิ่มมากขึ้นและการปรับขนาดเทคโนโลยีที่เข้มงวดพารามิเตอร์การทดสอบการเบิร์นอินข้อกำหนดการทดสอบเบิร์นอินจะแตกต่างกันไปขึ้นอยู่กับอุปกรณ์และมาตรฐานการทดสอบ (มาตรฐานทางทหารหรือโทรคมนาคม) โดยปกติแล้วจะต้องมีการทดสอบไฟฟ้าและความร้อนของผลิตภัณฑ์ โดยใช้รอบการทำงานไฟฟ้าที่คาดไว้ (สภาวะการทำงานที่รุนแรง) โดยทั่วไปจะกินเวลาประมาณ 48-168 ชั่วโมง อุณหภูมิความร้อนของห้องทดสอบเบิร์นอินอาจอยู่ระหว่าง 25°C ถึง 140°Cการเบิร์นอินจะถูกใช้กับผลิตภัณฑ์ขณะทำการผลิต เพื่อตรวจหาความล้มเหลวในระยะเริ่มต้นที่เกิดจากข้อผิดพลาดในวิธีปฏิบัติการผลิตการเบิร์นอินจะทำสิ่งต่อไปนี้โดยพื้นฐาน:ความเครียด + สภาวะที่รุนแรง + เวลาที่ยาวนาน = การเร่งอายุใช้งานปกติประเภทของการทดสอบเบิร์นอินการเบิร์นอินแบบไดนามิก: อุปกรณ์จะถูกสัมผัสกับแรงดันไฟฟ้าสูงและอุณหภูมิที่รุนแรงในขณะที่ถูกกระตุ้นจากอินพุตต่างๆระบบเบิร์นอินจะใช้การกระตุ้นไฟฟ้าต่างๆ กับอุปกรณ์แต่ละชิ้นในขณะที่อุปกรณ์สัมผัสกับอุณหภูมิและแรงดันไฟฟ้าที่สูงเกินไป ข้อดีของการเบิร์นอินแบบไดนามิกคือความสามารถในการสร้างความเครียดให้กับวงจรภายในมากขึ้น ทำให้เกิดกลไกความล้มเหลวเพิ่มเติม อย่างไรก็ตาม การเบิร์นอินแบบไดนามิกมีข้อจำกัด เนื่องจากไม่สามารถจำลองสิ่งที่อุปกรณ์จะประสบในระหว่างการใช้งานจริงได้อย่างสมบูรณ์ ดังนั้นโหนดวงจรทั้งหมดอาจไม่ได้รับความเครียดการเบิร์นอินแบบคงที่: อุปกรณ์ภายใต้การทดสอบ (DUT) จะถูกทำให้เครียดภายใต้อุณหภูมิคงที่ที่สูงเป็นระยะเวลานานระบบเบิร์นอินจะใช้แรงดันไฟฟ้าหรือกระแสไฟฟ้าและอุณหภูมิที่สูงเกินไปกับอุปกรณ์แต่ละชิ้นโดยไม่ต้องใช้งานหรือใช้งานอุปกรณ์ ข้อดีของการเบิร์นอินแบบคงที่คือมีต้นทุนต่ำและใช้งานง่ายการทดสอบเบิร์นอินทำอย่างไร?อุปกรณ์เซมิคอนดักเตอร์จะถูกวางบนแผง Burn-in Board พิเศษ (BiB) ในขณะที่การทดสอบดำเนินการภายในห้อง Burn-in Chamber พิเศษ (BIC)เรียนรู้เพิ่มเติมเกี่ยวกับห้องเผาไหม้ (คลิกที่นี่)
    อ่านเพิ่มเติม
  • ห้องเผาไหม้ ห้องเผาไหม้
    Nov 26, 2024
    ห้องเผาไหม้ห้องเบิร์นอินเป็นเตาอบสิ่งแวดล้อมที่ใช้เพื่อประเมินความน่าเชื่อถือของอุปกรณ์เซมิคอนดักเตอร์หลายตัวและทำการคัดกรองความจุขนาดใหญ่สำหรับความล้มเหลวก่อนกำหนด (การเสียชีวิตของทารก) ห้องสิ่งแวดล้อมเหล่านี้ได้รับการออกแบบสำหรับการเบิร์นอินแบบคงที่และแบบไดนามิกของวงจรรวม (IC) และอุปกรณ์อิเล็กทรอนิกส์อื่นๆ เช่น ไดโอดเลเซอร์การเลือกขนาดห้องขนาดห้องขึ้นอยู่กับขนาดของแผงเบิร์นอิน จำนวนผลิตภัณฑ์ในแต่ละแผงเบิร์นอิน และจำนวนชุดการผลิตต่อวันเพื่อตอบสนองความต้องการในการผลิต หากพื้นที่ภายในห้องมีขนาดเล็กเกินไป พื้นที่ระหว่างชิ้นส่วนที่ไม่เพียงพอจะส่งผลให้ประสิทธิภาพลดลง หากพื้นที่มีขนาดใหญ่เกินไป พื้นที่ เวลา และพลังงานจะเสียไปโดยเปล่าประโยชน์บริษัทต่างๆ ที่กำลังจัดซื้อชุดเบิร์นอินใหม่ควรทำงานร่วมกับผู้จำหน่ายเพื่อให้แน่ใจว่าแหล่งความร้อนมีสภาวะคงที่เพียงพอและมีความจุสูงสุดเพื่อให้ตรงกับโหลดของ DUTเมื่อใช้การไหลเวียนอากาศแบบบังคับ ชิ้นส่วนต่างๆ จะได้รับประโยชน์จากระยะห่าง แต่สามารถโหลดเตาอบในแนวตั้งได้หนาแน่นขึ้นเนื่องจากการไหลของอากาศกระจายไปตามผนังด้านข้างทั้งหมด ควรเว้นระยะห่างชิ้นส่วนต่างๆ 2-3 นิ้ว (5.1 – 7.6 ซม.) จากผนังเตาอบข้อมูลจำเพาะการออกแบบห้องเผาไหม้ช่วงอุณหภูมิขึ้นอยู่กับข้อกำหนดของอุปกรณ์ภายใต้การทดสอบ (DUT) เลือกห้องที่มีช่วงไดนามิก เช่น 15°C เหนืออุณหภูมิแวดล้อมถึง 300°C (572°F)ความแม่นยำของอุณหภูมิสิ่งสำคัญคืออุณหภูมิจะต้องไม่ผันผวน ความสม่ำเสมอคือความแตกต่างสูงสุดระหว่างอุณหภูมิสูงสุดและต่ำสุดในห้องที่การตั้งค่าที่กำหนด ข้อกำหนดค่าเซ็ตพอยต์อย่างน้อย 1% สำหรับความสม่ำเสมอและความแม่นยำในการควบคุม 1.0°C เป็นที่ยอมรับในแอปพลิเคชันเบิร์นอินเซมิคอนดักเตอร์ส่วนใหญ่ปณิธานความละเอียดที่อุณหภูมิสูง 0.1°C จะให้การควบคุมที่ดีที่สุดเพื่อตอบสนองความต้องการการเบิร์นอินการประหยัดด้านสิ่งแวดล้อมลองพิจารณาห้องเผาไหม้ที่มีสารทำความเย็นซึ่งมีค่าสัมประสิทธิ์การทำลายชั้นโอโซนเป็นศูนย์ ห้องเผาไหม้ที่มีระบบทำความเย็นเกี่ยวข้องกับห้องที่ทำงานในอุณหภูมิต่ำกว่า 0 องศาเซลเซียสถึง -55°Cการกำหนดค่าห้องสามารถออกแบบห้องให้มีกรงใส่การ์ด ช่องใส่การ์ด และประตูเข้าเพื่อให้เชื่อมต่อบอร์ด DUT และบอร์ดไดรเวอร์กับสถานี ATE ได้ง่ายขึ้นการไหลเวียนของอากาศในห้องในกรณีส่วนใหญ่ เตาอบแบบพัดลมดูดอากาศที่มีการไหลเวียนของอากาศแบบหมุนเวียนจะช่วยให้กระจายความร้อนได้ดีที่สุดและช่วยเร่งเวลาในการควบคุมอุณหภูมิและการถ่ายเทความร้อนไปยังชิ้นส่วนต่างๆ ได้อย่างมีนัยสำคัญ ความสม่ำเสมอของอุณหภูมิและประสิทธิภาพขึ้นอยู่กับการออกแบบพัดลมที่ส่งลมไปยังทุกพื้นที่ในห้องสามารถออกแบบห้องให้มีการไหลของอากาศในแนวราบหรือแนวตั้งได้ สิ่งสำคัญคือต้องทราบทิศทางในการใส่ DUT ตามการไหลของอากาศภายในห้องสายไฟ ATE ที่กำหนดเองเมื่อต้องวัดอุปกรณ์หลายร้อยชิ้น การสอดสายไฟผ่านช่องเปิดหรือรูทดสอบอาจไม่ใช่เรื่องที่สะดวก สามารถติดตั้งขั้วต่อสายไฟแบบกำหนดเองเข้ากับเตาอบโดยตรงเพื่อให้ตรวจสอบไฟฟ้าของอุปกรณ์ด้วย ATE ได้ง่ายขึ้นเตาอบแบบ Burn-in ควบคุมอุณหภูมิอย่างไรเตาอบแบบเบิร์นอินใช้ตัวควบคุมอุณหภูมิที่ดำเนินการตามอัลกอริทึม PID (สัดส่วน อินทิกรัล อนุพันธ์) มาตรฐาน ตัวควบคุมอุณหภูมิจะตรวจจับค่าอุณหภูมิจริงเทียบกับค่าเซ็ตพอยต์ที่ต้องการ และส่งสัญญาณแก้ไขไปยังเครื่องทำความร้อนเพื่อแจ้งการใช้งานตั้งแต่ไม่มีความร้อนจนถึงความร้อนเต็มที่ นอกจากนี้ ยังมีการใช้พัดลมเพื่อปรับอุณหภูมิให้เท่ากันภายในห้องเซ็นเซอร์ที่ใช้กันทั่วไปที่สุดสำหรับการควบคุมอุณหภูมิที่แม่นยำของเตาอบสิ่งแวดล้อมคือเครื่องตรวจจับอุณหภูมิแบบความต้านทาน (RTD) ซึ่งเป็นหน่วยที่ทำจากแพลตตินัม ซึ่งโดยทั่วไปเรียกว่า PT100การกำหนดขนาดห้องหากคุณใช้เตาอบที่มีอยู่แล้ว การสร้างแบบจำลองความร้อนพื้นฐานที่อิงตามปัจจัยต่างๆ เช่น ความจุความร้อนและการสูญเสียของเตาอบ เอาต์พุตของแหล่งความร้อน และมวล DUT จะช่วยให้คุณตรวจยืนยันได้ว่าเตาอบและแหล่งความร้อนเพียงพอที่จะถึงอุณหภูมิที่ต้องการโดยมีค่าคงที่เวลาความร้อนที่สั้นเพียงพอสำหรับการตอบสนองวงจรแน่นภายใต้การกำกับดูแลของตัวควบคุม
    อ่านเพิ่มเติม
  • ตู้บ่มอุณหภูมิสูง ตู้บ่มอุณหภูมิสูง
    Nov 20, 2024
    ตู้บ่มอุณหภูมิสูงตู้บ่มที่อุณหภูมิสูงเป็นอุปกรณ์บ่มชนิดหนึ่งที่ใช้เพื่อขจัดชิ้นส่วนผลิตภัณฑ์ที่ไม่เป็นไปตามมาตรฐานที่เกิดความล้มเหลวในระยะเริ่มต้นการใช้ตู้บ่มอุณหภูมิ เตาอบบ่ม:นี้ อุปกรณ์ทดสอบ เป็นอุปกรณ์ทดสอบสำหรับการบิน ยานยนต์ เครื่องใช้ในบ้าน การวิจัยทางวิทยาศาสตร์ และสาขาอื่น ๆ ซึ่งใช้ในการทดสอบและกำหนดพารามิเตอร์และประสิทธิภาพของผลิตภัณฑ์และวัสดุทางไฟฟ้า อิเล็กทรอนิกส์ และอื่น ๆ หลังจากการเปลี่ยนแปลงอุณหภูมิสภาพแวดล้อมในอุณหภูมิสูง อุณหภูมิต่ำ สลับกันระหว่างอุณหภูมิและความชื้นหรืออุณหภูมิและความชื้นคงที่ห้องทดสอบจะถูกพ่นด้วยแผ่นเหล็กหลังการบำบัด และสีสเปรย์นั้นสามารถเลือกได้ โดยทั่วไปจะเป็นสีเบจ กระจกสแตนเลส SUS304 ถูกใช้ในห้องด้านใน โดยมีกระจกนิรภัยหน้าต่างบานใหญ่ ทำให้สามารถสังเกตการเสื่อมสภาพภายในผลิตภัณฑ์ได้แบบเรียลไทม์คุณสมบัติของตู้บ่มอุณหภูมิ เตาอบบ่ม:1. ระบบควบคุมแบบรวมโปรแกรมหน้าจอสัมผัสสำหรับอุตสาหกรรมการประมวลผล PLC ระบบควบคุมอุณหภูมิที่สมดุล: การเพิ่มอุณหภูมิห้องของตัวอย่างที่เสื่อมสภาพจะทำให้พัดลมระบายอากาศทำงานสมดุลความร้อนของตัวอย่าง ตู้ที่เสื่อมสภาพจะแบ่งออกเป็นพื้นที่ผลิตภัณฑ์และพื้นที่โหลด2. ระบบควบคุมอุณหภูมิ PID+SSR: ตามการเปลี่ยนแปลงอุณหภูมิในกล่องตัวอย่าง ความร้อนของท่อทำความร้อนจะถูกปรับโดยอัตโนมัติเพื่อให้ได้สมดุลของอุณหภูมิ ดังนั้นความร้อนในการทำความร้อนของระบบจะเท่ากับการสูญเสียความร้อนและบรรลุการควบคุมสมดุลของอุณหภูมิ จึงสามารถทำงานได้อย่างเสถียรเป็นเวลานาน ความผันผวนของการควบคุมอุณหภูมิจะน้อยกว่า ±0.5℃3. ระบบขนส่งทางอากาศประกอบด้วยใบพัดและดรัมลมอิเล็กทรอนิกส์แบบอะซิงโครนัสสามเฟสหลายปีก แรงดันลมสูง ความเร็วลมสม่ำเสมอ และอุณหภูมิแต่ละจุดมีความสม่ำเสมอ4. ความต้านทานแพลตตินัม PT100 ที่มีความแม่นยำสูงสำหรับการรับอุณหภูมิ ความแม่นยำสูงสำหรับการรับอุณหภูมิ5. การควบคุมโหลด ระบบควบคุมโหลดให้การควบคุมเปิด/ปิดและการควบคุมเวลาสองตัวเลือกการทำงานเพื่อตอบสนองความต้องการการทดสอบที่แตกต่างกันของผลิตภัณฑ์(1) การแนะนำฟังก์ชันเปิด/ปิด: สามารถตั้งค่าเวลาสวิตช์ เวลาหยุด และเวลาในรอบได้ ผลิตภัณฑ์ทดสอบสามารถสลับได้ตามข้อกำหนดการตั้งค่าของระบบ การควบคุมรอบการหยุด จำนวนรอบการเสื่อมสภาพจะถึงค่าที่ตั้งไว้ ระบบจะส่งเสียงและไฟแจ้งเตือนโดยอัตโนมัติ(2) ฟังก์ชั่นควบคุมเวลา: ระบบสามารถตั้งเวลาการทำงานของผลิตภัณฑ์ทดสอบได้ เมื่อโหลดเริ่มทำงาน แหล่งจ่ายไฟของผลิตภัณฑ์จะเริ่มจับเวลา เมื่อเวลาจับเวลาจริงถึงเวลาที่ระบบกำหนด แหล่งจ่ายไฟไปยังผลิตภัณฑ์จะหยุดทำงาน6. ความปลอดภัยและเสถียรภาพในการทำงานของระบบ: การใช้ระบบควบคุมหน้าจอสัมผัสอุตสาหกรรม PLC การทำงานที่เสถียร ป้องกันการรบกวนที่แข็งแกร่ง การเปลี่ยนโปรแกรมที่สะดวก เส้นที่เรียบง่าย อุปกรณ์ป้องกันสัญญาณเตือนที่สมบูรณ์แบบ (ดูโหมดการป้องกัน) การตรวจสอบสถานะการทำงานของระบบแบบเรียลไทม์ พร้อมฟังก์ชั่นการบำรุงรักษาข้อมูลอุณหภูมิอัตโนมัติระหว่างการทำงาน เพื่อค้นหาข้อมูลประวัติอุณหภูมิเมื่อผลิตภัณฑ์มีอายุมากขึ้น ข้อมูลสามารถคัดลอกไปยังคอมพิวเตอร์ผ่านอินเทอร์เฟซ USB เพื่อวิเคราะห์ได้ (รูปแบบคือ EXCEL) พร้อมฟังก์ชั่นแสดงกราฟข้อมูลประวัติ สะท้อนการเปลี่ยนแปลงอุณหภูมิในพื้นที่ผลิตภัณฑ์ระหว่างการทดสอบผลิตภัณฑ์โดยสัญชาตญาณ และสามารถคัดลอกกราฟไปยังคอมพิวเตอร์ในรูปแบบ BMP ผ่านอินเทอร์เฟซ USB เพื่ออำนวยความสะดวกให้ผู้ปฏิบัติงานสร้างรายงานผลิตภัณฑ์ทดสอบ ระบบมีฟังก์ชั่นการค้นหาข้อผิดพลาด ระบบจะบันทึกสถานการณ์การแจ้งเตือนโดยอัตโนมัติ เมื่ออุปกรณ์ล้มเหลว ซอฟต์แวร์จะแสดงหน้าจอการแจ้งเตือนโดยอัตโนมัติเพื่อเตือนสาเหตุของข้อผิดพลาดและวิธีแก้ไข หยุดจ่ายไฟให้กับผลิตภัณฑ์ทดสอบเพื่อความปลอดภัยของผลิตภัณฑ์ทดสอบและอุปกรณ์เอง และบันทึกสถานการณ์ข้อผิดพลาดและเวลาที่เกิดขึ้นสำหรับการบำรุงรักษาในอนาคต
    อ่านเพิ่มเติม
  • ชิปเซมิคอนดักเตอร์-ชิปเกจวัดรถยนต์ ชิปเซมิคอนดักเตอร์-ชิปเกจวัดรถยนต์
    Nov 18, 2024
    ชิปเซมิคอนดักเตอร์-ชิปเกจวัดรถยนต์รถยนต์พลังงานใหม่แบ่งออกเป็นหลายระบบ โดย MCU เป็นส่วนหนึ่งของระบบควบคุมตัวถัง และระบบควบคุมยานพาหนะ ซึ่งเป็นหนึ่งในระบบที่สำคัญที่สุดชิป MCU แบ่งออกเป็น 5 ระดับ ได้แก่ ผู้บริโภค อุตสาหกรรม มาตรวัดยานพาหนะ QJ และ GJ ในจำนวนนี้ ชิปมาตรวัดรถยนต์เป็นผลิตภัณฑ์ใบพัดในปัจจุบัน ชิปมาตรวัดรถยนต์หมายถึงอะไร จากชื่อจะเห็นได้ว่าชิปมาตรวัดรถยนต์เป็นชิปที่ใช้ในรถยนต์ แตกต่างจากชิปผู้บริโภคและอุตสาหกรรมทั่วไป ความน่าเชื่อถือและความเสถียรของชิปมาตรวัดรถยนต์มีความสำคัญอย่างยิ่ง เพื่อให้มั่นใจในความปลอดภัยของรถยนต์ในการทำงานมาตรฐานการรับรองของชิประดับเกจวัดรถยนต์ คือ AEC-Q100 ซึ่งประกอบด้วยระดับอุณหภูมิ 4 ระดับ ยิ่งตัวเลขน้อยระดับก็ยิ่งสูง ข้อกำหนดสำหรับชิปก็จะยิ่งสูงขึ้นเนื่องจากข้อกำหนดของชิปมาตรวัดของรถยนต์นั้นสูงมาก จึงจำเป็นต้องทำการทดสอบการเบิร์นอินที่เข้มงวดก่อนส่งมอบจากโรงงาน การทดสอบ BI ต้องใช้เตา BI แบบมืออาชีพ เตา BI ของเราจึงสามารถผ่านการทดสอบ BI ของชิปมาตรวัดของรถยนต์ในปัจจุบันได้เชื่อมต่อระบบ EMS เพื่อให้สามารถตรวจสอบชิปที่อบแต่ละชุดได้ตลอดเวลา สภาพแวดล้อมแบบไร้อากาศสูญญากาศที่มีอุณหภูมิสูงและอุณหภูมิต่ำ ตรวจสอบเส้นโค้งการอบแบบเรียลไทม์เพื่อให้แน่ใจว่าการอบมีความปลอดภัยและได้ผล
    อ่านเพิ่มเติม
  • เตาเผา เตาเผา
    Nov 14, 2024
    เตาเผาการทดสอบเบิร์นอินเป็นการทดสอบความเครียดทางไฟฟ้าที่ใช้แรงดันไฟฟ้าและอุณหภูมิเพื่อเร่งให้อุปกรณ์ไฟฟ้าขัดข้อง การทดสอบเบิร์นอินจำลองอายุการใช้งานของอุปกรณ์ เนื่องจากการกระตุ้นไฟฟ้าที่ใช้ระหว่างการทดสอบเบิร์นอินอาจสะท้อนถึงอคติในกรณีเลวร้ายที่สุดที่อุปกรณ์จะต้องเผชิญตลอดอายุการใช้งาน ขึ้นอยู่กับระยะเวลาการทดสอบที่ใช้ ข้อมูลความน่าเชื่อถือที่ได้อาจเกี่ยวข้องกับอายุการใช้งานช่วงต้นหรือการสึกหรอของอุปกรณ์ การทดสอบเบิร์นอินอาจใช้เป็นเครื่องตรวจสอบความน่าเชื่อถือหรือเป็นหน้าจอการผลิตเพื่อคัดแยกอัตราการตายของทารกที่อาจเกิดขึ้นออกจากล็อตการเบิร์นอินมักจะทำที่อุณหภูมิ 125 องศาเซลเซียส โดยใช้ไฟฟ้ากระตุ้นตัวอย่าง กระบวนการเบิร์นอินจะง่ายขึ้นโดยใช้แผ่นเบิร์นอิน (ดูรูปที่ 1) ซึ่งใช้สำหรับโหลดตัวอย่าง จากนั้นแผ่นเบิร์นอินเหล่านี้จะถูกใส่เข้าไปในเตาอบ (ดูรูปที่ 2) ซึ่งจะจ่ายแรงดันไฟฟ้าที่จำเป็นให้กับตัวอย่างในขณะที่รักษาอุณหภูมิเตาอบไว้ที่ 125 องศาเซลเซียส ไฟฟ้าไบอัสที่ใช้สามารถเป็นแบบสถิตหรือไดนามิก ขึ้นอยู่กับกลไกความล้มเหลวที่ถูกเร่งรูปที่ 1 ภาพถ่ายของแผง Burn-in แบบเปลือยและแบบฝังซ็อกเก็ตการกระจายวงจรชีวิตการทำงานของกลุ่มอุปกรณ์อาจจำลองเป็นเส้นโค้งอ่างอาบน้ำได้ หากแสดงความล้มเหลวบนแกน y เทียบกับอายุการใช้งานในแกน x เส้นโค้งอ่างอาบน้ำแสดงให้เห็นว่าอัตราความล้มเหลวสูงสุดที่เกิดขึ้นกับกลุ่มอุปกรณ์เกิดขึ้นในช่วงเริ่มต้นของวงจรชีวิต หรือช่วงเริ่มต้นของอายุการใช้งาน และในช่วงระยะเวลาสึกหรอของวงจรชีวิต ระหว่างช่วงเริ่มต้นของอายุการใช้งานและช่วงระยะเวลาสึกหรอเป็นช่วงเวลาที่ยาวนาน ซึ่งอุปกรณ์จะล้มเหลวน้อยมาก รูปที่ 2 เตาอบแบบ Burn-inการเบิร์นอินมอนิเตอร์ที่ล้มเหลวในช่วงต้นชีวิต (ELF) ตามชื่อที่บ่งบอก จะดำเนินการเพื่อคัดกรองความล้มเหลวที่อาจเกิดขึ้นในช่วงต้นชีวิต การดำเนินการนี้จะใช้เวลาไม่เกิน 168 ชั่วโมง และโดยปกติจะใช้เวลาเพียง 48 ชั่วโมงเท่านั้น ความล้มเหลวทางไฟฟ้าหลังจากเบิร์นอินมอนิเตอร์ ELF เรียกว่าความล้มเหลวในช่วงต้นชีวิตหรือการเสียชีวิตของทารก ซึ่งหมายความว่าหน่วยเหล่านี้จะล้มเหลวก่อนเวลาอันควรหากใช้งานตามปกติการทดสอบอายุการใช้งานที่อุณหภูมิสูง (HTOL) ตรงข้ามกับการเบิร์นอินของจอภาพ ELF โดยทดสอบความน่าเชื่อถือของตัวอย่างในช่วงที่เสื่อมสภาพ HTOL ดำเนินการเป็นเวลา 1,000 ชั่วโมง โดยมีจุดอ่านกลางที่ 168 ชั่วโมงและ 500 ชั่วโมง แม้ว่าการกระตุ้นไฟฟ้าที่ใช้กับตัวอย่างมักถูกกำหนดโดยใช้แรงดันไฟฟ้า แต่กลไกความล้มเหลวที่เร่งโดยกระแสไฟ (เช่น การเคลื่อนที่ของอิเล็กโทรไมเกรชั่น) และสนามไฟฟ้า (เช่น การแตกของไดอิเล็กทริก) ก็เร่งขึ้นจากการเบิร์นอินด้วยเช่นกัน
    อ่านเพิ่มเติม
  • เตาอบและเตาเผาในห้องปฏิบัติการ เตาอบและเตาเผาในห้องปฏิบัติการ
    Nov 09, 2024
    เตาอบและเตาเผาในห้องปฏิบัติการการออกแบบโดยเน้นการปกป้องตัวอย่างเป็นเป้าหมายหลักเตาอบแล็บ เป็นยูทิลิตี้ที่ขาดไม่ได้สำหรับเวิร์กโฟลว์ประจำวันของคุณ ตั้งแต่การอบแก้วแบบธรรมดาไปจนถึงการใช้งานความร้อนที่ควบคุมอุณหภูมิที่ซับซ้อนมาก กลุ่มผลิตภัณฑ์เตาอบความร้อนและการอบแห้งของเรามอบความเสถียรของอุณหภูมิและความสามารถในการทำซ้ำได้สำหรับทุกความต้องการในการใช้งานของคุณ เตาอบความร้อนและการอบแห้ง LABCOMPANION ได้รับการออกแบบโดยมีเป้าหมายหลักในการปกป้องตัวอย่าง ซึ่งช่วยให้มีประสิทธิภาพ ปลอดภัย และใช้งานง่ายยิ่งขึ้นทำความเข้าใจเกี่ยวกับการพาความร้อนตามธรรมชาติและเชิงกลหลักการของการพาความร้อนตามธรรมชาติ:ในเตาอบแบบพาความร้อนตามธรรมชาติ อากาศร้อนจะไหลจากด้านล่างสู่ด้านล่าง ทำให้กระจายอุณหภูมิได้สม่ำเสมอ (ดูภาพด้านบน) ไม่มีพัดลมเป่าอากาศภายในกล่องโดยตรง ข้อดีของเทคโนโลยีนี้คือความปั่นป่วนของอากาศต่ำเป็นพิเศษ ซึ่งช่วยให้การอบและทำความร้อนเป็นไปอย่างนุ่มนวลหลักการของการพาความร้อนเชิงกล:ในเตาอบแบบพาความร้อนเชิงกล (ขับเคลื่อนด้วยลมอัด) พัดลมในตัวจะขับเคลื่อนอากาศภายในเตาอบอย่างแข็งขันเพื่อให้กระจายอุณหภูมิได้สม่ำเสมอทั่วทั้งห้อง (ดูรูปด้านบน) ข้อดีที่สำคัญประการหนึ่งคือความสม่ำเสมอของอุณหภูมิที่ยอดเยี่ยม ซึ่งทำให้สามารถทำซ้ำผลลัพธ์ได้ในการใช้งาน เช่น การทดสอบวัสดุ ตลอดจนสำหรับการทำให้แห้งด้วยสารละลายที่มีความต้องการอุณหภูมิที่สูง ข้อดีอีกประการหนึ่งคือ อัตราการทำให้แห้งเร็วกว่าการพาความร้อนตามธรรมชาติมาก หลังจากเปิดประตู อุณหภูมิในเตาอบแบบพาความร้อนเชิงกลจะกลับสู่ระดับอุณหภูมิที่ตั้งไว้ได้เร็วขึ้น
    อ่านเพิ่มเติม

ฝากข้อความ

ฝากข้อความ
หากคุณสนใจผลิตภัณฑ์ของเราและต้องการทราบรายละเอียดเพิ่มเติม โปรดฝากข้อความไว้ที่นี่ เราจะตอบกลับคุณโดยเร็วที่สุด
ส่ง

บ้าน

สินค้า

วอทส์แอพพ์

ติดต่อเรา