แบนเนอร์
บ้าน

ห้องทดสอบ

เอกสารสำคัญ
แท็ก

ห้องทดสอบ

  • หลักการทำงานของห้องทดสอบกันฝุ่น Guangdong Hongzhan หลักการทำงานของห้องทดสอบกันฝุ่น Guangdong Hongzhan
    Jun 20, 2025
    ห้องทดสอบฝุ่น Guangdong Hongzhan ถูกใช้เป็นหลักในการจำลองสภาพแวดล้อมทรายและฝุ่นตามธรรมชาติ เพื่อทดสอบความทนทานต่อฝุ่นของผลิตภัณฑ์ต่างๆ ในอุตสาหกรรมต่างๆ เช่น อิเล็กทรอนิกส์ ยานยนต์ และอวกาศ ผลิตภัณฑ์อาจเผชิญกับความท้าทายจากทรายและฝุ่น หากผลิตภัณฑ์มีความทนทานต่อฝุ่นไม่เพียงพอ อนุภาคทรายและฝุ่นสามารถแทรกซึมเข้าไปในอุปกรณ์ ทำให้เกิดการทำงานผิดปกติ ประสิทธิภาพลดลง หรือแม้แต่ความเสียหาย ดังนั้น การประเมินความทนทานต่อฝุ่นของผลิตภัณฑ์อย่างแม่นยำจึงเป็นสิ่งสำคัญ และห้องทดสอบฝุ่น Guangdong Hongzhan จึงเป็นแพลตฟอร์มการทดสอบที่เชื่อถือได้สำหรับบริษัทต่างๆ(1) โครงสร้างกล่อง: การผสมผสานระหว่างความแข็งแกร่งทนทานและการปิดผนึกห้องทดสอบผลิตจากสเตนเลสสตีลคุณภาพสูง ไม่เพียงแต่ทนทานต่อการกัดกร่อนและป้องกันการกัดเซาะของทรายและฝุ่นได้อย่างดีเยี่ยม แต่ยังปิดผนึกอย่างดีเพื่อป้องกันการรั่วไหลของทรายและฝุ่น ช่วยรักษาเสถียรภาพของสภาพแวดล้อมการทดสอบ ภายในห้องถูกแบ่งส่วนการใช้งานอย่างละเอียด เช่น โซนทดสอบตัวอย่าง ท่อหมุนเวียนทรายและฝุ่น ระบบทำความร้อน และระบบควบคุม อำนวยความสะดวกทั้งการใช้งานและการบำรุงรักษา(2) ระบบสร้างฝุ่น: จำลองสภาพแวดล้อมของฝุ่นได้อย่างแม่นยำนี่คือหนึ่งในส่วนประกอบหลักของห้องทดสอบ ประกอบด้วยหน่วยเก็บทรายและฝุ่น หน่วยลำเลียงทรายและฝุ่น และหน่วยกระจายทรายและฝุ่น หน่วยเก็บสามารถเก็บทรายและฝุ่นที่มีขนาดและองค์ประกอบต่างๆ ได้ตามต้องการในการทดสอบ หน่วยลำเลียงจะนำทรายและฝุ่นเข้าสู่ห้องทดสอบโดยใช้สกรูลำเลียงหรือวิธีการลำเลียงอากาศ หน่วยกระจายนี้ช่วยให้มั่นใจได้ว่าทรายและฝุ่นที่ลำเลียงมาจะกระจายตัวในอากาศอย่างสม่ำเสมอ สร้างสภาพแวดล้อมทรายและฝุ่นที่เสถียรและเหมาะสมสำหรับการทดสอบ ทำให้มั่นใจได้ว่าตัวอย่างแต่ละชิ้นได้รับการทดสอบอย่างละเอียดถี่ถ้วนภายใต้สภาวะที่สม่ำเสมอ(3) ระบบหมุนเวียนอากาศ: สร้างการไหลเวียนของอากาศฝุ่นที่เสถียรระบบหมุนเวียนอากาศประกอบด้วยพัดลม ท่อ และตัวกรองอากาศ พัดลมจ่ายพลังงานที่จำเป็นเพื่อให้มั่นใจว่าอากาศภายในห้องทดสอบจะไหลเวียนได้อย่างเต็มที่ ท่อเหล่านี้ช่วยควบคุมการไหลเวียนของอากาศได้อย่างมีประสิทธิภาพ ช่วยให้มั่นใจได้ว่าอากาศจะผ่านระบบสร้างทรายและฝุ่นและพื้นที่ทดสอบตัวอย่าง ทำให้ทรายและฝุ่นสัมผัสกับตัวอย่างได้อย่างเต็มที่ ตัวกรองอากาศช่วยกำจัดอนุภาคทรายและฝุ่นออกจากอากาศหมุนเวียนได้อย่างมีประสิทธิภาพ ช่วยปกป้องพัดลมและอุปกรณ์อื่นๆ จากความเสียหายและช่วยยืดอายุการใช้งาน(4) ระบบควบคุม: แกนการทำงานอัจฉริยะและแม่นยำระบบควบคุมใช้ตัวควบคุมลอจิกแบบตั้งโปรแกรมได้ (PLC) ขั้นสูงและอินเทอร์เฟซหน้าจอสัมผัส ผู้ปฏิบัติงานสามารถตั้งค่าและตรวจสอบพารามิเตอร์การทดสอบต่างๆ เช่น อุณหภูมิ ความชื้น ความเข้มข้นของฝุ่น และความเร็วลม ได้อย่างง่ายดายผ่านหน้าจอสัมผัส นอกจากนี้ยังมีความสามารถในการปรับค่าอัตโนมัติ ช่วยให้สามารถตรวจสอบและปรับพารามิเตอร์ต่างๆ ภายในห้องทดสอบได้อย่างแม่นยำตามค่าที่ตั้งไว้ล่วงหน้าอย่างต่อเนื่อง เพื่อให้มั่นใจว่าสภาพแวดล้อมการทดสอบเป็นไปตามมาตรฐานที่กำหนดอยู่เสมอ นอกจากนี้ ระบบควบคุมยังมีฟังก์ชันแจ้งเตือนและป้องกันข้อผิดพลาด ซึ่งสามารถส่งสัญญาณเตือนภัยและดำเนินมาตรการป้องกันได้ทันทีหากเกิดสภาวะผิดปกติใดๆ เพื่อความปลอดภัยทั้งอุปกรณ์และบุคลากร(5) เวิร์กโฟลว์ที่สมบูรณ์: กระบวนการทดสอบที่มีประสิทธิภาพและเข้มงวด ในระหว่างขั้นตอนการเตรียมการ ผู้ปฏิบัติงานจะเลือกอนุภาคทรายและฝุ่นที่เหมาะสมตามข้อกำหนดการทดสอบ และจัดเก็บไว้ในอุปกรณ์จัดเก็บ จากนั้นทำความสะอาดและตรวจสอบห้องทดสอบ และจัดวางตัวอย่างในพื้นที่ทดสอบอย่างเหมาะสม เมื่อห้องทดสอบเปิดใช้งาน ระบบสร้างทรายและฝุ่นจะเริ่มทำงาน โดยลำเลียงและกระจายทรายและฝุ่นสู่อากาศ ระบบหมุนเวียนอากาศช่วยให้มั่นใจได้ว่าอากาศทรายและฝุ่นจะไหลเวียนอย่างคงที่ ระบบควบคุมจะตรวจสอบและปรับพารามิเตอร์ต่างๆ อย่างต่อเนื่องเพื่อรักษาสภาพแวดล้อมการทดสอบให้คงที่ ในระหว่างขั้นตอนการทดสอบตัวอย่าง ห้องทดสอบจะทำงานตามตารางเวลาที่กำหนด
    อ่านเพิ่มเติม
  • ข้อผิดพลาดทั่วไปและวิธีการบำบัดของห้องทดสอบอุณหภูมิและความชื้นคงที่ ข้อผิดพลาดทั่วไปและวิธีการบำบัดของห้องทดสอบอุณหภูมิและความชื้นคงที่
    Jun 11, 2025
    เมื่อใช้งานห้องทดสอบอุณหภูมิและความชื้นคงที่ สิ่งสำคัญคือต้องตระหนักถึงปัญหาที่อาจเกิดขึ้นระหว่างกระบวนการและตรวจสอบให้แน่ใจว่าการทำงานเป็นไปอย่างถูกต้อง การใช้งานที่ไม่เหมาะสมอาจนำไปสู่ความผิดพลาดของอุปกรณ์ได้ง่าย อย่างไรก็ตาม เมื่อเวลาผ่านไป ความผิดพลาดบางประการก็อาจเกิดขึ้นอย่างหลีกเลี่ยงไม่ได้ ในบทความนี้ เราจะกล่าวถึงความผิดพลาดที่พบบ่อยหลายประการและแนวทางแก้ไขข้อผิดพลาด: หากอุณหภูมิไม่ถึงค่าที่ตั้งไว้ระหว่างการทดสอบอุณหภูมิสูง ขั้นตอนแรกคือการตรวจสอบระบบไฟฟ้าและแก้ไขปัญหาส่วนประกอบแต่ละชิ้น หากอุณหภูมิในห้องทดสอบอุณหภูมิและความชื้นคงที่เพิ่มขึ้นช้าเกินไป ให้ตรวจสอบระบบหมุนเวียนอากาศเพื่อให้แน่ใจว่าแดมเปอร์ปรับทำงานอย่างถูกต้อง หากอุณหภูมิสูงขึ้นเร็วเกินไป ให้ปรับการตั้งค่า PID หากอุณหภูมิสูงขึ้นเร็วเกินไปจนทำให้ระบบป้องกันอุณหภูมิสูงเกินไปทำงาน ตัวควบคุมอาจทำงานผิดปกติ ในกรณีนี้ ให้เปลี่ยนแผงควบคุมหรือรีเลย์โซลิดสเตต ข้อบกพร่อง: หากห้องทดสอบอุณหภูมิและความชื้นคงที่ไม่เป็นไปตามข้อกำหนดการทดสอบที่อุณหภูมิต่ำ ให้ตรวจสอบว่าอุณหภูมิลดลงช้ามาก หรือคงที่ ณ จุดใดจุดหนึ่งก่อนที่จะเพิ่มขึ้นอีกครั้ง หากอุณหภูมิลดลงช้ามาก ให้ตรวจสอบว่าห้องทดสอบแห้งก่อนการทดสอบที่อุณหภูมิต่ำเพื่อรักษาความแห้ง ตรวจสอบให้แน่ใจว่าตัวอย่างไม่ได้วางแน่นเกินไปเพื่อป้องกันการหมุนเวียนอากาศที่ไม่เพียงพอ หลังจากตัดปัญหาเหล่านี้แล้ว ให้พิจารณาว่าระบบทำความเย็นทำงานผิดปกติหรือไม่ ในกรณีเช่นนี้ ให้ขอการซ่อมแซมจากผู้ผลิต ข้อบกพร่อง: หากห้องทดสอบอุณหภูมิและความชื้นคงที่เกิดความผิดปกติระหว่างการทำงาน โดยแผงควบคุมแสดงข้อความแจ้งข้อผิดพลาดและเสียงเตือน ผู้ปฏิบัติงานสามารถดูส่วนการแก้ไขปัญหาในคู่มือผู้ใช้อุปกรณ์เพื่อระบุประเภทของข้อบกพร่องได้ จากนั้นเจ้าหน้าที่ซ่อมบำรุงมืออาชีพควรดำเนินการซ่อมแซมที่จำเป็นเพื่อให้มั่นใจว่าการทดสอบดำเนินไปอย่างราบรื่น อุปกรณ์ทดลองด้านสิ่งแวดล้อมอื่นๆ จะมีสภาพการใช้งานอื่นๆ ที่ต้องได้รับการจัดการตามสถานการณ์ปัจจุบัน
    อ่านเพิ่มเติม
  • IEC 68-2-66 วิธีทดสอบ Cx: ความร้อนชื้นแบบคงตัว (ไออิ่มตัวที่ไม่ได้รับแรงดัน)
    Apr 18, 2025
    คำนำ วัตถุประสงค์ของวิธีการทดสอบนี้คือเพื่อจัดทำขั้นตอนมาตรฐานสำหรับการประเมินความต้านทานของผลิตภัณฑ์ไฟฟ้าขนาดเล็ก (ส่วนใหญ่เป็นส่วนประกอบที่ไม่ปิดสนิท) โดยใช้ห้องทดสอบอุณหภูมิสูงและต่ำและสภาพแวดล้อมที่มีความชื้น ขอบเขต วิธีทดสอบนี้ใช้กับการทดสอบความร้อนชื้นเร่งของผลิตภัณฑ์ไฟฟ้าขนาดเล็ก ข้อจำกัด วิธีนี้ไม่เหมาะสำหรับการตรวจสอบผลกระทบภายนอกของตัวอย่าง เช่น การกัดกร่อนหรือการเสียรูป ขั้นตอนการทดสอบ1. การตรวจสอบก่อนการทดสอบ ชิ้นงานจะต้องผ่านการตรวจสอบด้วยสายตา มิติ และการทำงาน ตามที่กำหนดไว้ในมาตรฐานที่เกี่ยวข้อง 2. การวางตัวอย่าง ตัวอย่างจะต้องวางไว้ในห้องทดสอบภายใต้สภาวะห้องปฏิบัติการที่มีอุณหภูมิ ความชื้นสัมพัทธ์ และความดันบรรยากาศ 3. การใช้แรงดันไบอัส (ถ้ามี) หากจำเป็นต้องใช้แรงดันไฟฟ้าอคติตามมาตรฐานที่เกี่ยวข้อง ควรใช้เฉพาะเมื่อตัวอย่างถึงสมดุลความร้อนและความชื้นแล้วเท่านั้น 4. การเพิ่มอุณหภูมิและความชื้น อุณหภูมิจะต้องเพิ่มขึ้นถึงค่าที่กำหนด ในช่วงเวลานี้ อากาศในห้องจะถูกแทนที่โดยไอน้ำ อุณหภูมิและความชื้นสัมพัทธ์จะต้องไม่เกินขีดจำกัดที่กำหนด จะต้องไม่เกิดการควบแน่นบนตัวอย่าง การทำให้อุณหภูมิและความชื้นคงที่ต้องเสร็จภายใน 1.5 ชั่วโมง หากระยะเวลาการทดสอบเกิน 48 ชั่วโมงและไม่สามารถทำให้อุณหภูมิคงที่ได้ภายใน 1.5 ชั่วโมง จะต้องทำให้อุณหภูมิคงที่ภายใน 3.0 ชั่วโมง 5. การดำเนินการทดสอบ รักษาอุณหภูมิ ความชื้น และแรงดันที่ระดับที่กำหนดตามมาตรฐานที่เกี่ยวข้อง ระยะเวลาการทดสอบจะเริ่มต้นเมื่อถึงสภาวะคงที่ 6. การฟื้นฟูหลังการทดสอบ หลังจากระยะเวลาทดสอบที่กำหนด สภาพห้องจะต้องกลับสู่สภาพบรรยากาศมาตรฐาน (1–4 ชั่วโมง) อุณหภูมิและความชื้นจะต้องไม่เกินขีดจำกัดที่กำหนดในระหว่างการฟื้นตัว (อนุญาตให้มีการทำความเย็นตามธรรมชาติ) ควรปล่อยให้ตัวอย่างคงตัวเต็มที่ก่อนดำเนินการจัดการเพิ่มเติม 7. การวัดในการทดสอบ (ถ้าจำเป็น) การตรวจสอบทางไฟฟ้าหรือทางกลในระหว่างการทดสอบจะต้องดำเนินการโดยไม่เปลี่ยนแปลงเงื่อนไขการทดสอบ ห้ามนำตัวอย่างออกจากห้องก่อนที่จะนำกลับคืน 8. การตรวจสอบหลังการทดสอบภายหลังการฟื้นตัว (2–24 ชั่วโมง ภายใต้สภาวะมาตรฐาน) ตัวอย่างจะต้องผ่านการตรวจสอบด้วยสายตา ขนาด และการทำงานตามมาตรฐานที่เกี่ยวข้อง - เงื่อนไขการทดสอบเว้นแต่จะระบุไว้เป็นอย่างอื่น เงื่อนไขการทดสอบจะประกอบด้วยการรวมกันของอุณหภูมิและระยะเวลาตามที่ระบุไว้ในตารางที่ 1 - การตั้งค่าการทดสอบ1. ข้อกำหนดของห้อง เซ็นเซอร์วัดอุณหภูมิจะต้องตรวจสอบอุณหภูมิในห้อง ควรไล่อากาศในห้องด้วยไอน้ำก่อนการทดสอบ ห้ามให้คอนเดนเสทหยดลงบนตัวอย่าง 2. วัสดุห้องผนังห้องจะต้องไม่ทำให้คุณภาพของไอลดลงหรือทำให้เกิดการกัดกร่อนของตัวอย่าง 3. ความสม่ำเสมอของอุณหภูมิความคลาดเคลื่อนรวม (ความแปรผันเชิงพื้นที่ ความผันผวน และข้อผิดพลาดในการวัด): ±2°C เพื่อรักษาความทนทานต่อความชื้นสัมพัทธ์ (±5%) ความแตกต่างของอุณหภูมิระหว่างสองจุดในห้องจะต้องลดลงให้น้อยที่สุด (≤1.5°C) แม้จะอยู่ระหว่างการเพิ่มขึ้น/ลดลงก็ตาม 4. การวางตัวอย่างตัวอย่างต้องไม่กีดขวางการไหลของไอ ห้ามสัมผัสความร้อนโดยตรง หากใช้อุปกรณ์ติดตั้ง จะต้องลดการนำความร้อนและความจุความร้อนให้เหลือน้อยที่สุดเพื่อหลีกเลี่ยงการกระทบต่อสภาวะการทดสอบ วัสดุติดตั้งจะต้องไม่ทำให้เกิดการปนเปื้อนหรือการกัดกร่อน 3. คุณภาพน้ำ ใช้น้ำกลั่นหรือน้ำที่ผ่านการดีไอออนไนซ์ร่วมกับ: ค่าต้านทาน ≥0.5 MΩ·cm ที่ 23°C pH 6.0–7.2 ที่ 23°C ควรทำความสะอาดเครื่องเพิ่มความชื้นในห้องโดยการขัดถูก่อนเติมน้ำ - ข้อมูลเพิ่มเติมตารางที่ 2 แสดงอุณหภูมิไอน้ำอิ่มตัวที่สอดคล้องกับอุณหภูมิแห้ง (100–123°C) แผนผังของอุปกรณ์ทดสอบภาชนะเดี่ยวและภาชนะคู่แสดงในรูปที่ 1 และ 2 - ตารางที่ 1: ความรุนแรงของการทดสอบ| อุณหภูมิ (°C) | RH (%) | ระยะเวลา (ชม., -0/+2) | อุณหภูมิความชื้นสัมพัทธ์เวลา (ชั่วโมง, -0/+2)±2℃±5%ⅠⅡⅢ110859619240812085489619213085244896หมายเหตุ: ความดันไอที่ 110°C, 120°C และ 130°C จะต้องเป็น 0.12 MPa, 0.17 MPa และ 0.22 MPa ตามลำดับ - ตารางที่ 2: อุณหภูมิไอน้ำอิ่มตัวเทียบกับความชื้นสัมพัทธ์ (ช่วงอุณหภูมิแห้ง: 100–123°C)อุณหภูมิอิ่มตัว (℃)ญาติความชื้น(%RH)100%95%90%85%80%75%70%65%60%55%50%อุณหภูมิแห้ง (℃) 100 100.098.697.195.593.992.190.388.486.384.181.7101 101.099.698.196.594.893.191.289.387.285.082.6102 102.0100.699.097.595.894.092.290.288.185.983.5103 103.0101.5100.098.496.895.093.192.189.086.884.3104 104.0102.5101.099.497.795.994.192.190.087.785.2105 105.0103.5102.0100.498.796.995.093.090.988.686.1106 106.0104.5103.0101.399.697.896.093.991.889.587.0107 107.0105.5103.9102.3100.698.896.994.992.790.487.9108 108.0106.5104.9103.3101.699.897.895.893.691.388.8109 109.0107.5105.9104.3102.5100.798.896.794.592.289.7110 110.0108.5106.9105.2103.5101.799.797.795.593.190.6(คอลัมน์เพิ่มเติมสำหรับ %RH และอุณหภูมิอิ่มตัวจะตามมาตามตารางเดิม) - ชี้แจงเงื่อนไขสำคัญ:“ไออิ่มตัวที่ไม่ได้รับแรงดัน”: สภาพแวดล้อมที่มีความชื้นสูงโดยไม่ต้องใช้แรงดันจากภายนอก “สภาวะคงที่”: สภาวะคงที่คงไว้ตลอดการทดสอบ
    อ่านเพิ่มเติม
  • โครงสร้างกรอบหลัก 6 ประการและหลักการทำงานของห้องทดสอบอุณหภูมิและความชื้นคงที่
    Mar 13, 2025
    ระบบทำความเย็นระบบทำความเย็นเป็นส่วนประกอบที่สำคัญอย่างหนึ่งของ ห้องทดสอบที่ครอบคลุมโดยทั่วไป วิธีการทำความเย็น ได้แก่ การทำความเย็นเชิงกลและการทำความเย็นด้วยไนโตรเจนเหลวเสริม การทำความเย็นเชิงกลใช้รอบการบีบอัดไอ ซึ่งประกอบด้วยคอมเพรสเซอร์ คอนเดนเซอร์ กลไกควบคุมความเร็ว และเครื่องระเหยเป็นหลัก หากอุณหภูมิต่ำที่ต้องการถึง -55°C การทำความเย็นแบบขั้นตอนเดียวจะไม่เพียงพอ ดังนั้น ห้องอุณหภูมิและความชื้นคงที่ของ Labcompanion มักใช้ระบบทำความเย็นแบบเรียงซ้อน ระบบทำความเย็นแบ่งออกเป็น 2 ส่วน ได้แก่ ส่วนอุณหภูมิสูงและส่วนอุณหภูมิต่ำ ซึ่งแต่ละส่วนเป็นระบบทำความเย็นที่ค่อนข้างเป็นอิสระ ในส่วนอุณหภูมิสูง สารทำความเย็นจะระเหยและดูดซับความร้อนจากสารทำความเย็นในส่วนอุณหภูมิต่ำ ทำให้เกิดการระเหย ในส่วนอุณหภูมิต่ำ สารทำความเย็นจะระเหยและดูดซับความร้อนจากอากาศภายในห้องเพื่อให้เกิดการทำความเย็น ส่วนอุณหภูมิสูงและอุณหภูมิต่ำเชื่อมต่อกันด้วยคอนเดนเซอร์ระเหย ซึ่งทำหน้าที่เป็นคอนเดนเซอร์สำหรับส่วนอุณหภูมิสูงและเครื่องระเหยสำหรับส่วนอุณหภูมิต่ำ ระบบทำความร้อนระบบทำความร้อนของห้องทดสอบนั้นค่อนข้างเรียบง่ายเมื่อเทียบกับระบบทำความเย็น โดยส่วนใหญ่ประกอบด้วยสายต้านทานกำลังสูง เนื่องจากห้องทดสอบต้องการอัตราการทำความร้อนสูง ระบบทำความร้อนจึงได้รับการออกแบบให้มีกำลังมาก และยังติดตั้งเครื่องทำความร้อนบนแผ่นฐานของห้องทดสอบอีกด้วย ระบบควบคุมระบบควบคุมถือเป็นหัวใจสำคัญของห้องทดสอบที่ครอบคลุม โดยจะกำหนดตัวบ่งชี้ที่สำคัญ เช่น อัตราความร้อนและความแม่นยำ ห้องทดสอบที่ทันสมัยส่วนใหญ่ใช้ตัวควบคุม PID ในขณะที่บางห้องใช้ตัวควบคุม PID และการควบคุมแบบฟัซซีร่วมกัน เนื่องจากระบบควบคุมนั้นใช้ซอฟต์แวร์เป็นหลัก จึงทำงานได้โดยไม่มีปัญหาในระหว่างการใช้งาน ระบบความชื้นระบบความชื้นแบ่งออกเป็น 2 ระบบย่อย ได้แก่ การเพิ่มความชื้นและการลดความชื้น โดยทั่วไปการเพิ่มความชื้นจะทำได้โดยการฉีดไอน้ำ โดยไอน้ำแรงดันต่ำจะถูกฉีดเข้าไปในพื้นที่ทดสอบโดยตรง วิธีนี้ให้ความสามารถในการเพิ่มความชื้นสูง ตอบสนองรวดเร็ว และควบคุมได้อย่างแม่นยำ โดยเฉพาะอย่างยิ่งในระหว่างกระบวนการทำความเย็นที่จำเป็นต้องมีการเพิ่มความชื้นแบบบังคับ การลดความชื้นสามารถทำได้ 2 วิธี ได้แก่ การทำความเย็นด้วยเครื่องจักรและการลดความชื้นด้วยสารดูดความชื้น การลดความชื้นด้วยสารทำความเย็นด้วยเครื่องจักรทำงานโดยการทำให้อุณหภูมิของอากาศต่ำกว่าจุดน้ำค้าง ซึ่งจะทำให้ความชื้นส่วนเกินควบแน่นและส่งผลให้ความชื้นลดลง การลดความชื้นด้วยสารดูดความชื้นเกี่ยวข้องกับการสูบอากาศออกจากห้อง ฉีดอากาศแห้ง และรีไซเคิลอากาศชื้นผ่านสารดูดความชื้นเพื่อทำให้แห้งก่อนจะนำเข้าห้องทดสอบอีกครั้ง ห้องทดสอบที่ครอบคลุมส่วนใหญ่ใช้แบบแรก ในขณะที่แบบหลังสงวนไว้สำหรับการใช้งานเฉพาะทางที่ต้องการอุณหภูมิจุดน้ำค้างต่ำกว่า 0°C แม้ว่าจะมีต้นทุนที่สูงกว่าก็ตาม เซ็นเซอร์เซ็นเซอร์ประกอบด้วยเซ็นเซอร์อุณหภูมิและความชื้นเป็นหลัก เทอร์โมมิเตอร์และเทอร์โมคัปเปิลแบบต้านทานแพลตตินัมมักใช้ในการวัดอุณหภูมิ วิธีการวัดความชื้น ได้แก่ เทอร์โมมิเตอร์แบบหลอดแห้ง-เปียกและเซ็นเซอร์อิเล็กทรอนิกส์แบบโซลิดสเตต เนื่องจากความแม่นยำของวิธีหลอดแห้ง-เปียกต่ำกว่า เซ็นเซอร์แบบโซลิดสเตตจึงเข้ามาแทนที่ในห้องอุณหภูมิและความชื้นคงที่สมัยใหม่มากขึ้นเรื่อยๆ ระบบหมุนเวียนอากาศระบบหมุนเวียนอากาศโดยทั่วไปประกอบด้วยพัดลมแรงเหวี่ยงและมอเตอร์ที่ขับเคลื่อนพัดลม ระบบนี้ช่วยให้มั่นใจได้ว่าอากาศจะหมุนเวียนภายในห้องทดสอบอย่างต่อเนื่อง โดยรักษาอุณหภูมิและความชื้นให้กระจายอย่างสม่ำเสมอ
    อ่านเพิ่มเติม
  • การกระจายอุณหภูมิที่ไม่สม่ำเสมอในห้องทดสอบความชื้นอุณหภูมิสูงและต่ำ
    Mar 01, 2025
    การ ห้องทดสอบความชื้นอุณหภูมิสูงและต่ำ เป็นอุปกรณ์หลักในการทดสอบสภาพแวดล้อมอุณหภูมิและความชื้น ซึ่งส่วนใหญ่ใช้เพื่อประเมินความทนทานต่ออุณหภูมิและความชื้นของผลิตภัณฑ์ เพื่อให้แน่ใจว่าผลิตภัณฑ์ของเราสามารถทำงานและทำงานได้ตามปกติภายใต้สภาวะแวดล้อมใดๆ อย่างไรก็ตาม หากความสม่ำเสมอของอุณหภูมิเกินช่วงค่าเบี่ยงเบนที่อนุญาตในระหว่างการทดสอบสภาพแวดล้อมในห้องทดสอบ ข้อมูลที่ได้จากการทดสอบจะไม่น่าเชื่อถือและไม่สามารถใช้เป็นค่าความสม่ำเสมอสูงสุดสำหรับการทดสอบอุณหภูมิสูงและต่ำของวัสดุได้ แล้วอะไรคือสาเหตุที่ทำให้ความสม่ำเสมอของอุณหภูมิเกินช่วงค่าเบี่ยงเบนที่อนุญาต?  1. ความแตกต่างระหว่างวัตถุที่ทดสอบในห้องทดสอบอุณหภูมิสูงและต่ำที่มีความชื้น: หากตัวอย่างทดสอบมีผลกระทบต่อการพาความร้อนภายในของแคมเบอร์โดยรวมในระดับมาก ก็จะส่งผลต่อความสม่ำเสมอของอุณหภูมิภายในตัวอย่างอย่างหลีกเลี่ยงไม่ได้ ตัวอย่างเช่น หากผลิตภัณฑ์ไฟ LED ถูกทดสอบ ผลิตภัณฑ์จะเปล่งแสงและความร้อนออกมาเอง ซึ่งจะกลายเป็นภาระความร้อน ซึ่งจะส่งผลกระทบอย่างมากต่อความสม่ำเสมอของอุณหภูมิ 2. ปริมาตรของวัตถุที่ทดสอบ: หากปริมาตรของวัตถุที่ทดสอบมากเกินไปหรือตำแหน่งที่วางในห้องไม่เหมาะสม จะขัดขวางการพาความร้อนภายในและยังทำให้ความสม่ำเสมอของอุณหภูมิเบี่ยงเบนไปอย่างมาก การวางผลิตภัณฑ์ทดสอบไว้ข้างท่ออากาศจะส่งผลร้ายแรงต่อการหมุนเวียนของอากาศ และแน่นอนว่าความสม่ำเสมอของอุณหภูมิจะได้รับผลกระทบอย่างมาก  3. การออกแบบโครงสร้างภายในห้อง: แง่มุมนี้สะท้อนให้เห็นเป็นหลักในการออกแบบและการประมวลผลแผ่นโลหะ เช่น การออกแบบท่ออากาศ การวางท่อความร้อน และขนาดของกำลังพัดลม ทั้งหมดนี้จะส่งผลต่อความสม่ำเสมอของอุณหภูมิภายในส่วนโค้ง 4. การออกแบบผนังด้านในของแคมเบอร์: เนื่องจากโครงสร้างที่แตกต่างกันเกี่ยวกับผนังด้านในของห้องทดสอบ อุณหภูมิของผนังด้านในจึงไม่สม่ำเสมอด้วยเช่นกัน ซึ่งจะส่งผลต่อการพาความร้อนภายในห้องทำงานและทำให้ความสม่ำเสมอของอุณหภูมิภายในเบี่ยงเบนไป 5. ด้านทั้ง 6 ด้านของความโค้งมนมีการระบายความร้อนที่ไม่สม่ำเสมอ เนื่องจากค่าสัมประสิทธิ์การถ่ายเทความร้อนต่างกันที่ด้านหน้า ด้านหลัง ซ้าย ขวา บน และล่างของผนังความโค้งมน บางด้านจึงมีรูเกลียว ด้านอื่นๆ มีรูทดสอบ ฯลฯ ซึ่งจะทำให้เกิดการกระจายและถ่ายเทความร้อนในพื้นที่ ส่งผลให้ความโค้งมนกระจายตัวไม่สม่ำเสมอ และมีการถ่ายเทความร้อนแบบแผ่รังสีและการพาความร้อนที่ไม่สม่ำเสมอบนผนัง ซึ่งสุดท้ายแล้วจะส่งผลกระทบต่อความสม่ำเสมอของอุณหภูมิ  6. ความสามารถในการป้องกันการรั่วไหลของประตูโค้ง: การปิดผนึกของโค้งและประตูไม่เข้มงวด เช่น แถบปิดผนึกไม่ได้ถูกปรับแต่งและมีรอยต่อระหว่างประตูและผนัง ประตูจะรั่วอากาศ ซึ่งจะส่งผลกระทบต่อความสม่ำเสมอของอุณหภูมิของรูโค้ง  โดยสรุป สิ่งเหล่านี้อาจส่งผลต่อความสม่ำเสมอของอุณหภูมิภายในห้องทดสอบได้ เราแนะนำให้คุณตรวจสอบจากแง่มุมเหล่านี้ทีละประการ ซึ่งจะช่วยคลายความสับสนและปัญหาของคุณได้อย่างแน่นอน 
    อ่านเพิ่มเติม

ฝากข้อความ

ฝากข้อความ
หากคุณสนใจผลิตภัณฑ์ของเราและต้องการทราบรายละเอียดเพิ่มเติม โปรดฝากข้อความไว้ที่นี่ เราจะตอบกลับคุณโดยเร็วที่สุด
ส่ง

บ้าน

สินค้า

วอทส์แอพพ์

ติดต่อเรา