แบนเนอร์
บ้าน

ห้องทดสอบความชื้นอุณหภูมิสูงและต่ำ

ห้องทดสอบความชื้นอุณหภูมิสูงและต่ำ

  • Common Faults and Practical Solutions for High-Low Temperature Humidity Test Chambers
    Nov 19, 2025
    High and low temperature humidity test chambers are key reliability testing equipment, widely used in electronics, automotive and biomedicine. Their stability directly affects test accuracy. This article summarizes common faults and solutions for efficient troubleshooting. I. Temperature-related Faults: Core Impact on Test Accuracy 1. Failure to Reach Set Temperature Fault Performance: Fails to reach target temperature when heating; slow or no cooling.Possible Causes: Abnormal power voltage, burned heater, compressor failure, fan stop, air duct blockage.Solutions: Verify power matches rated specs (220V/380V); check fan operation and clean duct debris; contact professionals to replace faulty parts if heater/compressor fails. 2. Large Temperature Fluctuation and Poor Uniformity Fault Performance: Excessive temperature difference in the chamber or frequent fluctuations near set value.Possible Causes: Abnormal fan speed, damaged air duct seals, over-dense samples blocking airflow.Solutions: Arrange samples for ventilation; check fan stability and replace damaged seals promptly. 3. Severe Temperature Overshoot Fault Performance: Temperature overshoots set value significantly before dropping.Possible Causes: Improper controller settings, energy regulation system failure.Solutions: Restart to reset parameters; if unresolved, have technicians calibrate controller or overhaul regulation modules. II. Humidity-related Faults: Directly Linked to Test Environment Stability 1. Failure to Reach Set Humidity Fault Performance: Slow or no humidification.Possible Causes: Empty humidification tank, faulty water level sensor, burned humidifier tube, blocked solenoid valve.Solutions: Replenish water; clean valve filter; replace tube or repair sensor if humidifier fails to heat. 2. High Humidity That Cannot Be Reduced Fault Performance: Humidity remains above set value; dehumidification fails.Possible Causes: Faulty dehumidification system, poor chamber sealing, high ambient humidity.Solutions: Check door seals and reduce ambient humidity; report for repair if dehumidification module fails. 3. Abnormal Humidity Display Fault Performance: Humidity reading jumps, disappears or deviates greatly from reality.Possible Causes: Aging humidity sensor, contaminated probe.Solutions: Wipe probe with clean cloth; calibrate or replace sensor if inaccuracy persists. III. Operation and Circulation Faults: Ensure Basic Equipment Operation 1. Fan Not Rotating or Making Abnormal Noise Possible Causes: Motor damage, foreign objects in fan blades, worn bearings.Solutions: Clean debris after power-off; replace motor or bearings if fault persists. 2. Compressor Abnormality Fault Performance: Compressor fails to start or stops frequently after starting.Possible Causes: Power phase loss, overload protection trigger, refrigerant leakage.Solutions: Check three-phase wiring; retry after overload reset; report for refrigerant and compressor inspection if fault recurs. 3. Equipment Alarm Fault Performance: Alarms like "phase loss" or "overload" activate.Possible Causes: Triggered protection from wrong phase sequence, unstable voltage or overheated components.Solutions: Troubleshoot per alarm; restart after 30-minute cooldown for overload; report if ineffective. IV. Core Notes 1. Always power off before troubleshooting to avoid shock or component damage.2. Contact professionals for complex repairs (compressors, refrigerants, circuit boards); do not disassemble yourself.3. Regularly clean air ducts, filters and sensors to reduce over 80% of common faults.
    อ่านเพิ่มเติม
  • The Applicability of Temperature Test Chambers to the Testing of Household Environmental Products
    Oct 18, 2025
    A variety of products used in home environments (more common test objects) such as televisions, air conditioners, refrigerators, washing machines, smart speakers, routers, etc., as well as environmental protection products used to improve the home environment: such as air purifiers, fresh air systems, water purifiers, humidifiers/dehumidifiers, etc. No matter which category it is, as long as it needs to work stably for a long time in a home environment, it must undergo strict environmental reliability tests. The high and low temperature test chamber is precisely the core equipment for accomplishing this task.   The home environment is not always warm and pleasant, and products will face various harsh challenges in actual use. This mainly includes regional climate differences, ranging from the severe cold in Northeast China (below -30°C) to the scorching heat in Hainan (up to over 60°C in the car or on the balcony). High-temperature scenarios such as kitchens close to stoves, balconies exposed to direct sunlight, and stuffy attics, etc. Or low-temperature scenarios: warehouses/balconies without heating in northern winters, or near the freezer of refrigerators. The high and low temperature test chamber, by simulating these conditions, "accelerates" the aging of products in the laboratory and exposes problems in advance.   The actual test cases mainly cover the following aspects: 1. The smart TV was continuously operated at a high temperature of 55°C for 8 hours to test its heat dissipation design and prevent screen flickering and system freezing caused by overheating of the mainboard. 2. For products with lithium batteries (such as cordless vacuum cleaners and power tools), conduct charge and discharge cycles at -10°C to assess the battery performance and safety at low temperatures and prevent over-discharge or fire risks. 3. The air purifier (with both types of "environmental product" attributes) undergoes dozens of temperature cycles between -20°C and 45°C to ensure that its plastic air ducts, motor fixing frames and other structures will not crack or produce abnormal noises due to repeated thermal expansion and contraction. 4. Smart door lock: High-temperature and high-humidity test (such as 40°C, 93%RH) to prevent internal circuits from getting damp and short-circuited, which could lead to fingerprint recognition failure or the motor being unable to drive the lock tongue.   High and low temperature test chambers are not only applicable but also indispensable for the testing of household environmental products. By precisely controlling temperature conditions, it can ensure user safety and prevent the risk of fire or electric shock caused by overheating or short circuits. Ensure that the product can work stably in different climates and home environments to reduce after-sales malfunctions. And it can predict the service life of the product through accelerated testing. Therefore, both traditional home appliance giants and emerging smart home companies will take high and low temperature testing as a standard step in their product development and quality control processes.
    อ่านเพิ่มเติม
  • หลักการทำงานของเครื่องทำความเย็นแบบอัดอากาศระบายความร้อนด้วยอากาศ Lab Companion หลักการทำงานของเครื่องทำความเย็นแบบอัดอากาศระบายความร้อนด้วยอากาศ Lab Companion
    Sep 06, 2025
    1.การบีบอัดสารทำความเย็นที่เป็นก๊าซอุณหภูมิต่ำและความดันต่ำจะไหลออกจากเครื่องระเหยและถูกคอมเพรสเซอร์ดูดเข้าไป คอมเพรสเซอร์จะทำงานกับก๊าซส่วนนี้ (ใช้พลังงานไฟฟ้า) และบีบอัดอย่างรุนแรง เมื่อสารทำความเย็นเปลี่ยนเป็นไอร้อนยวดยิ่งที่มีอุณหภูมิสูงและความดันสูง อุณหภูมิของไอจะสูงกว่าอุณหภูมิแวดล้อมมาก ทำให้เกิดสภาวะที่ความร้อนจะถูกระบายออกสู่ภายนอก2. การควบแน่นไอสารทำความเย็นอุณหภูมิสูงและแรงดันสูงจะเข้าสู่คอนเดนเซอร์ (โดยปกติจะเป็นตัวแลกเปลี่ยนความร้อนแบบท่อครีบที่ประกอบด้วยท่อทองแดงและครีบอะลูมิเนียม) พัดลมจะบังคับให้อากาศภายนอกพัดผ่านครีบคอนเดนเซอร์ จากนั้นไอสารทำความเย็นจะปล่อยความร้อนให้กับอากาศที่ไหลอยู่ภายในคอนเดนเซอร์ เนื่องจากการระบายความร้อน ไอสารทำความเย็นจะค่อยๆ ควบแน่นจากสถานะก๊าซไปเป็นของเหลวที่มีอุณหภูมิปานกลางและแรงดันสูง ณ จุดนี้ ความร้อนจะถูกถ่ายโอนจากระบบทำความเย็นไปยังสภาพแวดล้อมภายนอก3. การขยายตัวสารทำความเย็นเหลวที่มีอุณหภูมิปานกลางและแรงดันสูงจะไหลผ่านช่องแคบผ่านอุปกรณ์ควบคุมแรงดัน ซึ่งทำหน้าที่ควบคุมและลดแรงดัน คล้ายกับการใช้นิ้วปิดรูท่อน้ำ เมื่อแรงดันของสารทำความเย็นลดลงอย่างกะทันหัน อุณหภูมิก็จะลดลงอย่างรวดเร็วเช่นกัน กลายเป็นส่วนผสมสองเฟสของก๊าซและของเหลวที่มีอุณหภูมิต่ำและความดันต่ำ (หมอก)4. การระเหยส่วนผสมของก๊าซและของเหลวที่มีอุณหภูมิต่ำและความดันต่ำจะเข้าสู่เครื่องระเหย และพัดลมอีกตัวหนึ่งจะหมุนเวียนอากาศภายในกล่องผ่านครีบของเครื่องระเหยที่เย็น ของเหลวสารทำความเย็นจะดูดซับความร้อนของอากาศที่ไหลผ่านครีบในเครื่องระเหย ระเหยและกลายเป็นไออย่างรวดเร็ว และเปลี่ยนกลับเป็นก๊าซอุณหภูมิต่ำและความดันต่ำ เนื่องจากการดูดซับความร้อน อุณหภูมิของอากาศที่ไหลผ่านเครื่องระเหยจึงลดลงอย่างมาก ส่งผลให้ห้องทดสอบเย็นลง จากนั้น ก๊าซอุณหภูมิต่ำและความดันต่ำนี้จะถูกดึงกลับเข้าไปในคอมเพรสเซอร์อีกครั้ง เพื่อเริ่มต้นวงจรถัดไป ด้วยวิธีนี้ วงจรจะวนซ้ำไปซ้ำมาอย่างไม่มีที่สิ้นสุด ระบบทำความเย็นจะ "เคลื่อนย้าย" ความร้อนภายในกล่องออกสู่ภายนอกอย่างต่อเนื่อง และกระจายความร้อนออกสู่บรรยากาศผ่านพัดลม
    อ่านเพิ่มเติม
  • รายละเอียดการทำงานของห้องทดสอบความชื้นอุณหภูมิสูงและต่ำ รายละเอียดการทำงานของห้องทดสอบความชื้นอุณหภูมิสูงและต่ำ
    Jun 05, 2025
    ห้องทดสอบอุณหภูมิสูงและต่ำ ความชื้น และความร้อนใช้หลักการควบคุมอุณหภูมิและความชื้นที่สมดุลเพื่อให้ได้สภาพแวดล้อมที่แม่นยำ มีความสามารถในการให้ความร้อนและความชื้นที่เสถียรและสมดุล ทำให้สามารถควบคุมอุณหภูมิและความชื้นได้อย่างแม่นยำที่อุณหภูมิสูง ห้องทดสอบนี้ติดตั้งตัวควบคุมอุณหภูมิอัจฉริยะ โดยใช้หน้าจอสัมผัส LCD สีสำหรับการตั้งค่าอุณหภูมิและความชื้น ช่วยให้ตั้งค่าโปรแกรมที่ซับซ้อนต่างๆ ได้ การตั้งค่าโปรแกรมจะตั้งค่าผ่านอินเทอร์เฟซการสนทนา ทำให้การทำงานง่ายและรวดเร็ว วงจรทำความเย็นจะเลือกโหมดทำความเย็นที่เหมาะสมโดยอัตโนมัติตามอุณหภูมิที่ตั้งไว้ ทำให้ทำความเย็นโดยตรงและลดอุณหภูมิในสภาวะอุณหภูมิสูงได้ ฐานทำจากเหล็กช่องเชื่อมเป็นโครงกริด ทำให้รับน้ำหนักของห้องทดสอบและบุคลากรในสภาวะแนวนอนได้โดยไม่ทำให้พื้นผิวด้านล่างไม่เรียบหรือแตกร้าว ห้องทดสอบแบ่งออกเป็น 6 พื้นผิวและประตูเปิดคู่หรือบานเดียว เปลือกด้านในทำจากแผ่นสแตนเลส ส่วนเปลือกด้านนอกทำจากแผ่นเหล็กเคลือบสี ฉนวนเป็นโฟมโพลียูรีเทนแข็งซึ่งมีน้ำหนักเบา ทนทาน และทนต่อแรงกระแทก ประตูยังทำจากแผ่นเหล็กเคลือบสีพร้อมที่จับที่ออกแบบมาสำหรับการเปิดทั้งภายในและภายนอก ช่วยให้เจ้าหน้าที่ทดสอบเปิดประตูได้อย่างอิสระจากภายในห้องที่ปิดสนิท ห้องทดสอบนี้สามารถบันทึกและติดตามกระบวนการทดสอบทั้งหมด โดยมอเตอร์แต่ละตัวติดตั้งระบบป้องกันกระแสเกินและป้องกันไฟฟ้าลัดวงจรสำหรับเครื่องทำความร้อน ทำให้มีความน่าเชื่อถือสูงในระหว่างการทำงาน มีอินเทอร์เฟซ USB และฟังก์ชันการสื่อสารอีเทอร์เน็ต ตอบสนองความต้องการที่หลากหลายของลูกค้าสำหรับการสื่อสารและการขยายซอฟต์แวร์ โหมดควบคุมการทำความเย็นยอดนิยมลดการใช้พลังงานลง 30% เมื่อเทียบกับโหมดควบคุมสมดุลความร้อนแบบดั้งเดิม ช่วยประหยัดพลังงานและไฟฟ้า ห้องทดสอบโดยทั่วไปประกอบด้วยโครงสร้างป้องกัน ระบบท่ออากาศ ระบบควบคุม และกรอบการทดสอบในร่ม เพื่อให้มั่นใจได้ถึงอัตราการลดอุณหภูมิและข้อกำหนดอุณหภูมิของห้องทดสอบความชื้นอุณหภูมิสูงและต่ำได้ดีขึ้น จึงเลือกใช้หน่วยทำความเย็นแบบคาสเคดซึ่งใช้คอมเพรสเซอร์ทำความเย็นนำเข้า หน่วยทำความเย็นประเภทนี้มีข้อดี เช่น การประสานงานที่มีประสิทธิภาพ ความน่าเชื่อถือสูง และการใช้งานและการบำรุงรักษาที่ง่ายดาย เมื่อใช้ระบบนี้ ไม่ควรละเลยรายละเอียดบางอย่าง รายละเอียดเหล่านี้คืออะไร?1. ปฏิบัติตามกฎการทำงานของระบบอย่างเคร่งครัด เพื่อหลีกเลี่ยงไม่ให้ผู้อื่นละเมิดกฎการทำงานของระบบ2. ห้ามบุคลากรที่ไม่ใช่ช่างเทคนิคทำการถอดประกอบและซ่อมแซมเครื่องจักร หากจำเป็นต้องถอดประกอบและซ่อมแซม ควรดำเนินการภายใต้เงื่อนไขที่ต้องปิดเครื่องและมีเจ้าหน้าที่คอยดูแลเพื่อหลีกเลี่ยงอุบัติเหตุ3. เมื่อเปิดหรือปิดประตู หรือเมื่อนำหรือเอาสิ่งของทดสอบออกจากห้องทดสอบ อย่าให้สิ่งของทดสอบสัมผัสขอบยางของประตูหรือขอบกล่อง เพื่อป้องกันไม่ให้ขอบยางสึกหรอ4. ควรรักษาพื้นดินโดยรอบให้สะอาดอยู่เสมอ เพื่อไม่ให้ฝุ่นละอองเข้าไปสะสมในเครื่องมากเกินไป จนทำให้สภาพการทำงานเสื่อมลงและประสิทธิภาพลดลง5. ควรใส่ใจเรื่องการป้องกันระหว่างใช้งาน และไม่ควรให้ผลิตภัณฑ์ชนกับวัตถุมีคมหรือทื่อ ควรวางผลิตภัณฑ์ทดสอบในห้องปฏิบัติการให้ห่างจากช่องระบายอากาศดูดและระบายอากาศออกของช่องปรับอากาศในระยะหนึ่ง เพื่อหลีกเลี่ยงการขัดขวางการไหลเวียนของอากาศ6. การไม่ได้ใช้งานเป็นเวลานานอาจลดอายุการใช้งานของระบบได้ ดังนั้นควรเปิดเครื่องและใช้งานอย่างน้อย 1 ครั้งทุก 10 วัน หลีกเลี่ยงการใช้งานระบบในระยะสั้นบ่อยครั้ง หลังจากใช้งานแต่ละครั้ง ไม่ควรรีสตาร์ทระบบเกิน 5 ครั้งต่อชั่วโมง โดยแต่ละช่วงเปิด-ปิดเครื่องควรห่างกันอย่างน้อย 3 นาที ห้ามเปิดประตูเมื่ออากาศเย็น เพื่อป้องกันไม่ให้ซีลประตูเสียหาย7. หลังการทดสอบแต่ละครั้ง ให้ตั้งอุณหภูมิให้ใกล้เคียงกับอุณหภูมิแวดล้อม ทำงานต่อไปประมาณ 30 นาที จากนั้นตัดแหล่งจ่ายไฟ และเช็ดทำความสะอาดผนังด้านในของห้องทำงาน8. การทำความสะอาดเครื่องระเหย (เครื่องลดความชื้น) เป็นประจำ: เนื่องจากระดับความสะอาดของตัวอย่างแตกต่างกัน ฝุ่นละอองและอนุภาคขนาดเล็กอื่นๆ จำนวนมากจะถูกควบแน่นบนเครื่องระเหย (เครื่องลดความชื้น) ภายใต้การทำงานของการหมุนเวียนอากาศแบบบังคับ ดังนั้นจึงควรทำความสะอาดเป็นประจำ9. ควรบำรุงรักษาคอนเดนเซอร์เป็นประจำและรักษาความสะอาด ฝุ่นละอองที่เกาะติดคอนเดนเซอร์จะทำให้คอมเพรสเซอร์ระบายความร้อนได้ไม่ดี ส่งผลให้สวิตช์แรงดันสูงกระโดดขึ้นและเกิดสัญญาณเตือนที่ผิดพลาด ควรบำรุงรักษาคอนเดนเซอร์เป็นประจำ10. ทำความสะอาดเครื่องเพิ่มความชื้นเป็นประจำเพื่อป้องกันการสะสมของตะกรันซึ่งอาจลดประสิทธิภาพและอายุการใช้งานของเครื่องและทำให้ท่อน้ำอุดตัน ในการทำความสะอาด ให้ถอดแผงคอยล์เย็นออกจากห้องทำงาน ใช้แปรงขนนุ่มขัดเครื่องเพิ่มความชื้น ล้างด้วยน้ำสะอาด แล้วระบายน้ำออกทันที 11. ตรวจสอบผ้าทดสอบของหลอดเปียกเป็นประจำ หากพื้นผิวสกปรกหรือแข็ง ให้เปลี่ยนใหม่เพื่อให้แน่ใจว่าการอ่านค่าของเซ็นเซอร์ความชื้นแม่นยำ ควรเปลี่ยนผ้าทดสอบทุกสามเดือน เมื่อเปลี่ยนผ้าทดสอบ ให้ทำความสะอาดหัวเก็บน้ำก่อน เช็ดเซ็นเซอร์อุณหภูมิให้สะอาดด้วยผ้าสะอาด จากนั้นจึงเปลี่ยนผ้าทดสอบ ตรวจสอบให้แน่ใจว่ามือของคุณสะอาดเมื่อเปลี่ยนผ้าทดสอบใหม่
    อ่านเพิ่มเติม
  • การใช้งานห้องทดสอบความชื้นอุณหภูมิสูงและต่ำ
    Jun 03, 2025
    ห้องทดสอบความชื้นอุณหภูมิสูงและต่ำ มีบทบาทสำคัญในอุตสาหกรรมต่างๆ มากมาย เนื่องจากมีความสามารถในการจำลองสภาพแวดล้อมได้อย่างมีประสิทธิภาพ ต่อไปนี้คือภาพรวมของอุตสาหกรรมการใช้งานหลัก:❖ อุตสาหกรรมการบินและอวกาศใช้ในการทดสอบประสิทธิภาพของเครื่องบิน ดาวเทียม จรวด และส่วนประกอบและวัสดุอื่นๆ สำหรับการบินและอวกาศภายใต้สภาวะอุณหภูมิและความชื้นที่รุนแรง❖ ทดสอบเสถียรภาพและความน่าเชื่อถือของส่วนประกอบอิเล็กทรอนิกส์ แผงวงจร จอแสดงผล แบตเตอรี่ และผลิตภัณฑ์อิเล็กทรอนิกส์อื่นๆ ในสภาพแวดล้อมที่มีอุณหภูมิสูง อุณหภูมิต่ำ และความชื้น❖ ประเมินความทนทานของส่วนประกอบยานยนต์ เช่น ชิ้นส่วนเครื่องยนต์ ระบบควบคุมอิเล็กทรอนิกส์ ยาง และสารเคลือบในสภาพแวดล้อมที่รุนแรง❖ การทดสอบความสามารถในการปรับตัวต่อสภาพแวดล้อมในการใช้งานด้านการป้องกันประเทศและการทหารของอุปกรณ์ทางทหารและระบบอาวุธเพื่อให้แน่ใจว่าอุปกรณ์เหล่านั้นสามารถใช้งานได้ตามปกติภายใต้สภาพภูมิอากาศที่หลากหลาย❖ การวิจัยด้านวิทยาศาสตร์วัสดุเกี่ยวกับการทนความร้อน ทนความเย็น และทนความชื้นของวัสดุใหม่ รวมถึงคุณสมบัติทางกายภาพและทางเคมีภายใต้สภาวะแวดล้อมที่แตกต่างกัน❖ การประเมินพลังงานและสิ่งแวดล้อมของความสามารถในการปรับตัวต่อสิ่งแวดล้อมและการทนทานต่อสภาพอากาศของผลิตภัณฑ์พลังงานใหม่ เช่น แผงโซลาร์เซลล์และอุปกรณ์กักเก็บพลังงาน❖ การทดสอบการขนส่งสมรรถนะของส่วนประกอบของยานพาหนะ เรือ เครื่องบิน และยานพาหนะขนส่งอื่น ๆ ในสภาพแวดล้อมที่รุนแรง❖ การทดสอบทางชีวการแพทย์เกี่ยวกับเสถียรภาพและประสิทธิภาพของอุปกรณ์การแพทย์และยาภายใต้การเปลี่ยนแปลงของอุณหภูมิและความชื้น❖ การตรวจสอบคุณภาพใช้สำหรับการทดสอบสิ่งแวดล้อมและการรับรองผลิตภัณฑ์ในศูนย์ควบคุมคุณภาพผลิตภัณฑ์ ห้องทดสอบความชื้นที่อุณหภูมิสูงและต่ำช่วยให้บริษัทและสถาบันต่างๆ ในอุตสาหกรรมดังกล่าวข้างต้นมั่นใจได้ว่าผลิตภัณฑ์ของตนสามารถทำงานได้ตามปกติในสภาพแวดล้อมการใช้งานที่คาดหวัง โดยจำลองสภาวะสุดขั้วต่างๆ ที่อาจพบได้ในสภาพแวดล้อมทางธรรมชาติ เพื่อปรับปรุงความสามารถในการแข่งขันทางการตลาดของผลิตภัณฑ์
    อ่านเพิ่มเติม
  • ห้องทดสอบความชื้นอุณหภูมิสูงและต่ำ ห้องทดสอบความชื้นอุณหภูมิสูงและต่ำ
    Jun 02, 2025
    A ห้องทดสอบความชื้นอุณหภูมิสูงและต่ำ เป็นอุปกรณ์ที่ใช้ทดสอบประสิทธิภาพของผลิตภัณฑ์ในอุณหภูมิสูง อุณหภูมิต่ำ หรือสภาพแวดล้อมที่มีความชื้นและร้อน ใช้กันอย่างแพร่หลายในการทดสอบผลิตภัณฑ์อวกาศ เครื่องมือและมิเตอร์อิเล็กทรอนิกส์ข้อมูล วัสดุ เครื่องใช้ไฟฟ้า ผลิตภัณฑ์อิเล็กทรอนิกส์ และส่วนประกอบอิเล็กทรอนิกส์ต่างๆ หลักการทำงานพื้นฐาน:❖ โครงสร้างกล่อง: มักทำจากสแตนเลสหรือวัสดุที่ทนต่อการกัดกร่อนอื่นๆ ส่วนพื้นที่ภายในใช้สำหรับวางตัวอย่างสำหรับการทดสอบ และแผงควบคุมและจอแสดงผลภายนอกจะได้รับการติดตั้ง❖ ระบบควบคุมอุณหภูมิและความชื้น: รวมถึงเครื่องทำความร้อน ระบบทำความเย็น (แบบขั้นตอนเดียว แบบสองขั้นตอน หรือแบบซ้อนกัน) อุปกรณ์ควบคุมความชื้นและลดความชื้น รวมถึงเซ็นเซอร์และไมโครโปรเซสเซอร์เพื่อให้แน่ใจว่าอุณหภูมิและความชื้นในกล่องสามารถควบคุมได้อย่างแม่นยำ❖ ระบบหมุนเวียนอากาศ: พัดลมในตัวส่งเสริมการหมุนเวียนอากาศภายในกล่องเพื่อให้แน่ใจว่าอุณหภูมิและความชื้นกระจายสม่ำเสมอ❖ ระบบควบคุม: ใช้ไมโครคอมพิวเตอร์หรือตัวควบคุม PLC ผู้ใช้สามารถตั้งค่าอุณหภูมิ ความชื้น และเวลาทดสอบที่ต้องการได้ผ่านอินเทอร์เฟซการทำงาน และระบบจะดำเนินการและรักษาเงื่อนไขที่ตั้งไว้โดยอัตโนมัติ Lab Companion ก่อตั้งขึ้นเมื่อวันที่ 4 พฤษภาคม 2005 และเป็นองค์กรเทคโนโลยีขั้นสูงแห่งชาติที่มีสำนักงานใหญ่อยู่ที่เมืองตงกวน มณฑลกวางตุ้ง บริษัทมีศูนย์วิจัยและพัฒนาและโรงงานผลิตหลักสองแห่งในเมืองตงกวนและคุนซาน ครอบคลุมพื้นที่รวม 10,000 ตารางเมตร ผลิตอุปกรณ์ทดสอบสิ่งแวดล้อมประมาณ 2,000 หน่วยต่อปี บริษัทดำเนินการศูนย์บริการขายและบำรุงรักษาในปักกิ่ง เซี่ยงไฮ้ อู่ฮั่น เฉิงตู ฉงชิ่ง ซีอาน และฮ่องกง Hongzhan มุ่งมั่นในเทคโนโลยีอุปกรณ์ทดสอบสิ่งแวดล้อมมาโดยตลอด โดยมุ่งมั่นอย่างต่อเนื่องเพื่อความเป็นเลิศเพื่อสร้างความน่าเชื่อถือที่ตรงตามมาตรฐานสากล ลูกค้าของบริษัทครอบคลุมอุตสาหกรรมต่างๆ รวมถึงอิเล็กทรอนิกส์ เซมิคอนดักเตอร์ ออปโตอิเล็กทรอนิกส์ การสื่อสาร อวกาศ เครื่องจักร ห้องปฏิบัติการ และยานยนต์ ตั้งแต่การพัฒนาผลิตภัณฑ์ไปจนถึงบริการหลังการขาย ทุกขั้นตอนได้รับการชี้นำจากมุมมองและความต้องการของลูกค้า
    อ่านเพิ่มเติม
  • การทดสอบการพาความร้อนตามธรรมชาติ (การทดสอบอุณหภูมิโดยไม่มีการหมุนเวียนของลม) และข้อมูลจำเพาะ การทดสอบการพาความร้อนตามธรรมชาติ (การทดสอบอุณหภูมิโดยไม่มีการหมุนเวียนของลม) และข้อมูลจำเพาะ
    Oct 18, 2024
    การทดสอบการพาความร้อนตามธรรมชาติ (การทดสอบอุณหภูมิโดยไม่มีการหมุนเวียนของลม) และข้อมูลจำเพาะอุปกรณ์โสตทัศนูปกรณ์เพื่อความบันเทิงภายในบ้านและอิเล็กทรอนิกส์ยานยนต์เป็นหนึ่งในผลิตภัณฑ์หลักของผู้ผลิตหลายราย และผลิตภัณฑ์ในกระบวนการพัฒนาจะต้องจำลองความสามารถในการปรับตัวของผลิตภัณฑ์ให้เข้ากับอุณหภูมิและคุณลักษณะทางอิเล็กทรอนิกส์ที่อุณหภูมิที่แตกต่างกัน อย่างไรก็ตาม เมื่อใช้เตาอบทั่วไปหรือห้องทดสอบอุณหภูมิและความชื้นคงที่เพื่อจำลองสภาพแวดล้อมอุณหภูมิ ทั้งเตาอบและห้องทดสอบอุณหภูมิและความชื้นคงที่ต่างก็มีพื้นที่ทดสอบที่ติดตั้งพัดลมหมุนเวียน ดังนั้นจะมีปัญหาความเร็วลมในพื้นที่ทดสอบ ในระหว่างการทดสอบ ความสม่ำเสมอของอุณหภูมิจะสมดุลกันโดยการหมุนพัดลมหมุนเวียน แม้ว่าความสม่ำเสมอของอุณหภูมิในพื้นที่ทดสอบสามารถทำได้โดยการหมุนเวียนของลม แต่ความร้อนของผลิตภัณฑ์ที่จะทดสอบก็จะถูกดูดออกไปโดยอากาศหมุนเวียนด้วย ซึ่งจะไม่สม่ำเสมออย่างมากกับผลิตภัณฑ์จริงในสภาพแวดล้อมการใช้งานที่ไม่มีลม (เช่น ห้องนั่งเล่น ในร่ม) เนื่องจากความสัมพันธ์ของการหมุนเวียนของลม ความแตกต่างของอุณหภูมิของผลิตภัณฑ์ที่จะทดสอบจะอยู่ที่ประมาณ 10 ° C เพื่อจำลองการใช้งานจริงของสภาพแวดล้อม หลายคนจะเข้าใจผิดว่ามีเพียงเครื่องทดสอบเท่านั้นที่สามารถผลิตอุณหภูมิ (เช่น เตาอบ ห้องทดสอบอุณหภูมิและความชื้นคงที่) สามารถทำการทดสอบการพาความร้อนตามธรรมชาติได้ ในความเป็นจริง ไม่เป็นเช่นนั้น ในข้อกำหนด มีข้อกำหนดพิเศษสำหรับความเร็วลม และจำเป็นต้องมีสภาพแวดล้อมการทดสอบที่ไม่มีความเร็วลม ผ่านอุปกรณ์ทดสอบการพาความร้อนตามธรรมชาติ (ไม่มีการทดสอบการหมุนเวียนของลมแบบบังคับ) สภาพแวดล้อมอุณหภูมิจะถูกสร้างขึ้นโดยไม่มีพัดลม (การทดสอบการพาความร้อนตามธรรมชาติ) จากนั้นจึงดำเนินการทดสอบการบูรณาการการทดสอบเพื่อตรวจจับอุณหภูมิของผลิตภัณฑ์ที่ทดสอบ โซลูชันนี้สามารถนำไปใช้กับการทดสอบอุณหภูมิแวดล้อมจริงของผลิตภัณฑ์อิเล็กทรอนิกส์ที่เกี่ยวข้องกับครัวเรือนหรือพื้นที่จำกัด (เช่น ทีวี LCD ขนาดใหญ่ ห้องโดยสารรถยนต์ อุปกรณ์อิเล็กทรอนิกส์ในรถยนต์ แล็ปท็อป คอมพิวเตอร์เดสก์ท็อป คอนโซลเกม สเตอริโอ ฯลฯ)ความแตกต่างของสภาพแวดล้อมในการทดสอบที่มีหรือไม่มีการหมุนเวียนของลมในการทดสอบผลิตภัณฑ์ที่จะทดสอบ:หากผลิตภัณฑ์ที่จะทดสอบไม่ได้รับพลังงาน ผลิตภัณฑ์ที่จะทดสอบจะไม่ร้อนขึ้นเอง แหล่งความร้อนจะดูดซับความร้อนจากอากาศในเตาทดสอบเท่านั้น และหากผลิตภัณฑ์ที่จะทดสอบได้รับพลังงานและความร้อน การหมุนเวียนของลมในเตาทดสอบจะดึงความร้อนของผลิตภัณฑ์ที่จะทดสอบออกไป ทุกๆ 1 เมตรที่เพิ่มขึ้นของความเร็วลม ความร้อนจะลดลงประมาณ 10% สมมติว่าจำลองลักษณะอุณหภูมิของผลิตภัณฑ์อิเล็กทรอนิกส์ในสภาพแวดล้อมในร่มที่ไม่มีเครื่องปรับอากาศ หากใช้เตาอบหรือห้องทดสอบอุณหภูมิและความชื้นคงที่เพื่อจำลองอุณหภูมิ 35 ° C แม้ว่าจะสามารถควบคุมสภาพแวดล้อมในพื้นที่ทดสอบได้ภายใน 35 ° C โดยการทำความร้อนด้วยไฟฟ้าและการแช่แข็ง แต่การหมุนเวียนของลมในเตาอบและห้องทดสอบอุณหภูมิและความชื้นคงที่จะดึงความร้อนของผลิตภัณฑ์ที่จะทดสอบออกไป ทำให้อุณหภูมิจริงของผลิตภัณฑ์ที่จะทดสอบต่ำกว่าอุณหภูมิในสถานะจริงที่ไม่มีลม ดังนั้นจึงจำเป็นต้องใช้เครื่องทดสอบการพาความร้อนตามธรรมชาติโดยไม่มีความเร็วลม เพื่อจำลองสภาพแวดล้อมที่ไม่มีลมจริงได้อย่างมีประสิทธิภาพ (เช่น ในร่ม ห้องโดยสารรถที่ไม่สตาร์ท ตัวถังเครื่องมือ กล่องกันน้ำกลางแจ้ง... สภาพแวดล้อมดังกล่าว)สภาพแวดล้อมภายในอาคารที่ไม่มีการหมุนเวียนของลมและการแผ่รังสีความร้อนจากแสงอาทิตย์:ผ่านเครื่องทดสอบการพาความร้อนตามธรรมชาติ จำลองการใช้งานจริงของลูกค้าในสภาพแวดล้อมการพาความร้อนของเครื่องปรับอากาศ วิเคราะห์จุดร้อน และลักษณะการกระจายความร้อนของการประเมินผลิตภัณฑ์ เช่น ทีวี LCD ในภาพไม่เพียงแต่พิจารณาการกระจายความร้อนของตัวเองเท่านั้น แต่ยังประเมินผลกระทบของรังสีความร้อนภายนอกหน้าต่างด้วย รังสีความร้อนสำหรับผลิตภัณฑ์อาจทำให้เกิดความร้อนแผ่กระจายเพิ่มเติมที่อุณหภูมิสูงกว่า 35°Cตารางเปรียบเทียบความเร็วลมและผลิตภัณฑ์ IC ที่จะทดสอบ:เมื่อความเร็วลมโดยรอบสูงขึ้น อุณหภูมิพื้นผิว IC จะดึงความร้อนบนพื้นผิว IC จากรอบลมออกไปด้วย ส่งผลให้ความเร็วลมสูงขึ้นและอุณหภูมิต่ำลง โดยเมื่อความเร็วลมอยู่ที่ 0 อุณหภูมิจะอยู่ที่ 100℃ แต่เมื่อความเร็วลมถึง 5m/s อุณหภูมิพื้นผิว IC จะอยู่ต่ำกว่า 80℃การทดสอบการไหลเวียนของอากาศแบบไม่บังคับ:ตามข้อกำหนดเฉพาะของ IEC60068-2-2 ในกระบวนการทดสอบอุณหภูมิสูง จำเป็นต้องดำเนินการภายใต้เงื่อนไขการทดสอบโดยไม่มีการหมุนเวียนอากาศบังคับ กระบวนการทดสอบจำเป็นต้องคงอยู่ภายใต้ส่วนประกอบการหมุนเวียนอากาศปลอดลม และการทดสอบอุณหภูมิสูงจะดำเนินการในเตาทดสอบ ดังนั้นจึงไม่สามารถดำเนินการทดสอบผ่านห้องทดสอบหรือเตาอบที่มีอุณหภูมิและความชื้นคงที่ได้ และสามารถใช้เครื่องทดสอบการพาความร้อนตามธรรมชาติเพื่อจำลองสภาวะอากาศปลอดลมได้คำอธิบายเงื่อนไขการทดสอบ:ข้อกำหนดการทดสอบการไหลเวียนอากาศแบบไม่บังคับ: มอก.68-2-2, มอก.2423.2, มอก.2423.2-89 3.3.1การทดสอบการไหลเวียนของอากาศแบบไม่บังคับ: สภาพการทดสอบการไหลเวียนอากาศแบบไม่บังคับสามารถจำลองสภาพอากาศอิสระได้ดีGB2423.2-89 3.1.1:เมื่อทำการวัดภายใต้สภาวะอากาศอิสระ เมื่ออุณหภูมิของตัวอย่างทดสอบมีเสถียรภาพ อุณหภูมิของจุดที่ร้อนที่สุดบนพื้นผิวจะสูงกว่าอุณหภูมิของอุปกรณ์ขนาดใหญ่โดยรอบมากกว่า 5℃ ถือเป็นตัวอย่างทดสอบการกระจายความร้อน ในกรณีอื่น ๆ ถือเป็นตัวอย่างทดสอบที่ไม่มีการกระจายความร้อนGB2423.2-8 10 (ตัวอย่างการทดสอบการกระจายความร้อน การทดสอบการไล่ระดับอุณหภูมิ) :มีการจัดทำขั้นตอนการทดสอบมาตรฐานเพื่อพิจารณาความสามารถในการปรับตัวของผลิตภัณฑ์อิเล็กทรอนิกส์ความร้อน (รวมถึงส่วนประกอบ อุปกรณ์ ผลิตภัณฑ์อื่นๆ) ในการใช้งานที่อุณหภูมิสูงข้อกำหนดการทดสอบ:ก. เครื่องทดสอบที่ไม่มีการหมุนเวียนอากาศแบบบังคับ (มีพัดลมหรือโบลเวอร์ติดตั้งอยู่)ข. ตัวอย่างทดสอบเดี่ยวc. อัตราความร้อนไม่เกิน 1℃/นาทีง. หลังจากอุณหภูมิของตัวอย่างทดสอบถึงเสถียรภาพแล้ว ตัวอย่างทดสอบจะถูกจ่ายพลังงานหรือดำเนินการโหลดไฟฟ้าภายในบ้านเพื่อตรวจจับประสิทธิภาพไฟฟ้าคุณลักษณะของห้องทดสอบการพาความร้อนแบบธรรมชาติ:1. สามารถประเมินผลผลิตความร้อนของผลิตภัณฑ์ที่จะทดสอบหลังจ่ายไฟ เพื่อให้เกิดความสม่ำเสมอในการกระจายความร้อนที่ดีที่สุด2. ใช้ร่วมกับตัวรวบรวมข้อมูลดิจิทัล ช่วยวัดข้อมูลอุณหภูมิที่เกี่ยวข้องของผลิตภัณฑ์ที่ต้องการทดสอบอย่างมีประสิทธิภาพสำหรับการวิเคราะห์แบบมัลติแทร็กแบบซิงโครนัส3. บันทึกข้อมูลรางมากกว่า 20 ราง (บันทึกการกระจายอุณหภูมิภายในเตาทดสอบแบบซิงโครนัส อุณหภูมิหลายรางของผลิตภัณฑ์ที่ต้องการทดสอบ อุณหภูมิเฉลี่ย ฯลฯ)4. ตัวควบคุมสามารถแสดงค่าบันทึกอุณหภูมิแบบมัลติแทร็กและเส้นโค้งการบันทึกได้โดยตรง สามารถเก็บเส้นโค้งการทดสอบแบบมัลติแทร็กบนไดรฟ์ USB ได้ผ่านตัวควบคุม5. ซอฟต์แวร์วิเคราะห์เส้นโค้งสามารถแสดงเส้นโค้งอุณหภูมิแบบมัลติแทร็กและส่งออกรายงาน EXCEL ได้อย่างชัดเจน และตัวควบคุมมีจอแสดงผลสามแบบ [ภาษาอังกฤษแบบซับซ้อน]6. การเลือกเซนเซอร์อุณหภูมิเทอร์โมคัปเปิลหลายประเภท (B, E, J, K, N, R, S, T)7. ปรับขนาดได้เพื่อเพิ่มอัตราการให้ความร้อนและวางแผนเสถียรภาพการควบคุม
    อ่านเพิ่มเติม
  • เซลล์แสงอาทิตย์แบบคอนเซนเตรเตอร์ เซลล์แสงอาทิตย์แบบคอนเซนเตรเตอร์
    Oct 15, 2024
    เซลล์แสงอาทิตย์แบบคอนเซนเตรเตอร์เซลล์แสงอาทิตย์แบบรวมแสงเป็นการรวมกันของ [Concentrator Photovoltaic] + [Fresnel Lenes] + [Sun Tracker] ประสิทธิภาพการแปลงพลังงานแสงอาทิตย์สามารถเข้าถึง 31% ~ 40.7% ถึงแม้ว่าประสิทธิภาพการแปลงจะสูง แต่เนื่องจากเวลาการมองจากดวงอาทิตย์ที่ยาวนานจึงถูกนำมาใช้ในอุตสาหกรรมอวกาศในอดีตและตอนนี้สามารถใช้ในอุตสาหกรรมการผลิตไฟฟ้าด้วยตัวติดตามแสงแดดซึ่งไม่เหมาะสำหรับครอบครัวทั่วไป วัสดุหลักของเซลล์แสงอาทิตย์แบบรวมแสงคือแกลเลียมอาร์เซไนด์ (GaAs) นั่นคือวัสดุสามกลุ่มห้า (III-V) วัสดุผลึกซิลิคอนทั่วไปสามารถดูดซับพลังงานที่มีความยาวคลื่น 400 ~ 1,100 นาโนเมตรในสเปกตรัมแสงอาทิตย์เท่านั้นและตัวรวมแสงแตกต่างจากเทคโนโลยีแสงอาทิตย์เวเฟอร์ซิลิคอนผ่านสารกึ่งตัวนำแบบมัลติจั๊งก์ชั่นสามารถดูดซับพลังงานสเปกตรัมแสงอาทิตย์ในช่วงที่กว้างขึ้นได้ และการพัฒนาเซลล์แสงอาทิตย์แบบรวมแสงสามจั๊งก์ InGaP/GaAs/Ge ในปัจจุบันสามารถปรับปรุงประสิทธิภาพการแปลงได้อย่างมาก เซลล์แสงอาทิตย์ชนิดรวมแสงสามจุดสามารถดูดซับพลังงานที่ความยาวคลื่น 300 ~ 1900 นาโนเมตร ทำให้ประสิทธิภาพในการแปลงดีขึ้นอย่างมาก และความต้านทานความร้อนของเซลล์แสงอาทิตย์ชนิดรวมแสงยังสูงกว่าเซลล์แสงอาทิตย์ชนิดเวเฟอร์ทั่วไปอีกด้วย
    อ่านเพิ่มเติม
  • เงื่อนไขการทดสอบโพลาไรเซอร์ เงื่อนไขการทดสอบโพลาไรเซอร์
    Oct 09, 2024
    เงื่อนไขการทดสอบโพลาไรเซอร์โพลาไรเซอร์เป็นหนึ่งในชิ้นส่วนพื้นฐานของจอแสดงผลคริสตัลเหลว ซึ่งเป็นแผ่นแสงที่ยอมให้แสงผ่านได้เฉพาะในทิศทางที่กำหนดเท่านั้น ในกระบวนการผลิตแผ่นคริสตัลเหลว ต้องใช้ด้านบนและด้านล่างของแต่ละชิ้นส่วน และวางไว้ในทิศทางที่เหลื่อมกัน ส่วนใหญ่ใช้สำหรับสนามไฟฟ้าและไม่มีสนามไฟฟ้า เมื่อแหล่งกำเนิดแสงสร้างความแตกต่างของเฟสและสถานะของแสงและความมืด เพื่อแสดงคำบรรยายหรือรูปแบบเงื่อนไขการทดสอบที่เกี่ยวข้อง:เนื่องจากโครงสร้างโมเลกุลของไอโอดีนถูกทำลายได้ง่ายภายใต้สภาวะอุณหภูมิและความชื้นสูง ความทนทานของโพลาไรเซอร์ที่ผลิตโดยเทคโนโลยีการย้อมไอโอดีนจึงต่ำ และโดยทั่วไปสามารถตอบสนองได้เพียง:อุณหภูมิสูง: 80℃×500HRร้อนและชื้น: สภาพการทำงานต่ำกว่า 60℃×90%RH×500HRอย่างไรก็ตาม ด้วยการขยายตัวของการใช้งานผลิตภัณฑ์ LCD เงื่อนไขการทำงานที่เปียกและร้อนของผลิตภัณฑ์โพลาไรซ์จึงกลายเป็นที่ต้องการมากขึ้นเรื่อยๆ และมีความต้องการผลิตภัณฑ์แผ่นโพลาไรซ์ที่ทำงานในสภาวะ 100 ° C และ 90% RH และเงื่อนไขสูงสุดในปัจจุบันคือ:อุณหภูมิสูง: 105℃×500HRความชื้นและความร้อน: ข้อกำหนดในการทดสอบต่ำกว่า 90℃×95%RH×500HRการทดสอบความทนทานของโพลาไรเซอร์ประกอบด้วยวิธีการทดสอบสี่วิธี ได้แก่ อุณหภูมิสูง ความร้อนแบบเปียก อุณหภูมิต่ำ และความเย็นและความร้อน โดยการทดสอบที่สำคัญที่สุดคือการทดสอบแบบเปียกและความร้อน การทดสอบอุณหภูมิสูงหมายถึงสภาพการทำงานที่อุณหภูมิสูงของโพลาไรเซอร์ที่อุณหภูมิการอบคงที่ ในปัจจุบัน แบ่งตามเกรดทางเทคนิคของโพลาไรเซอร์ได้ดังนี้:ประเภทสากล: อุณหภูมิในการทำงานคือ 70℃×500HR;ประเภทความทนทานปานกลาง: อุณหภูมิในการทำงานคือ 80℃×500HR;ประเภทความทนทานสูง: อุณหภูมิในการทำงานอยู่ที่ 90℃×500H เหนือเกรดทั้งสามนี้เนื่องจากวัสดุพื้นฐานของฟิล์มโพลาไรซ์ PVA และไอโอดีนและไอโอไดด์เป็นวัสดุที่ไฮโดรไลซ์ได้ง่าย แต่เนื่องจากกาวที่ไวต่อแรงกดที่ใช้ในแผ่นโพลาไรซ์ยังเสื่อมสภาพได้ง่ายภายใต้สภาวะอุณหภูมิสูงและความชื้นสูง สิ่งที่สำคัญที่สุดในการทดสอบสภาพแวดล้อมของแผ่นโพลาไรซ์คืออุณหภูมิสูงและความร้อนจากความชื้น  
    อ่านเพิ่มเติม
  • โมดูลโซลาร์เซลล์และไมโครอินเวอร์เตอร์ AC 1 โมดูลโซลาร์เซลล์และไมโครอินเวอร์เตอร์ AC 1
    Oct 09, 2024
    โมดูลโซลาร์เซลล์และไมโครอินเวอร์เตอร์ AC 1พลังงานเอาต์พุตโดยรวมของแผงเซลล์แสงอาทิตย์ลดลงอย่างมาก โดยเฉพาะอย่างยิ่งเนื่องจากความเสียหายของโมดูลบางส่วน (ลูกเห็บ แรงลม ความสั่นสะเทือนของลม แรงหิมะ ฟ้าผ่า) เงาในพื้นที่ สิ่งสกปรก มุมเอียง ทิศทาง อายุที่แตกต่างกัน รอยแตกร้าวเล็กๆ... ปัญหาเหล่านี้จะทำให้เกิดการจัดตำแหน่งการกำหนดค่าระบบที่ไม่ถูกต้อง ส่งผลให้ประสิทธิภาพเอาต์พุตมีข้อบกพร่องลดลง ซึ่งยากที่จะแก้ไขอินเวอร์เตอร์แบบรวมศูนย์แบบดั้งเดิม อัตราส่วนต้นทุนการผลิตพลังงานแสงอาทิตย์: โมดูล (40 ~ 50%) การก่อสร้าง (20 ~ 30%) อินเวอร์เตอร์ (
    อ่านเพิ่มเติม
  • โมดูลโซลาร์เซลล์และไมโครอินเวอร์เตอร์ AC 2 โมดูลโซลาร์เซลล์และไมโครอินเวอร์เตอร์ AC 2
    Oct 08, 2024
    โมดูลโซลาร์เซลล์และไมโครอินเวอร์เตอร์ AC 2ข้อมูลจำเพาะการทดสอบโมดูล AC:การรับรอง ETL: UL 1741, มาตรฐาน CSA 22.2, มาตรฐาน CSA 22.2 หมายเลข 107.1-1, IEEE 1547, IEEE 929โมดูล PV: UL1703จดหมายข่าว: 47CFR, ส่วนที่ 15, ชั้น Bระดับการป้องกันไฟกระชาก: IEEE 62.41 คลาส Bรหัสไฟฟ้าแห่งชาติ: NEC 1999-2008อุปกรณ์ป้องกันอาร์ค: IEEE 1547คลื่นแม่เหล็กไฟฟ้า: BS EN 55022, FCC Class B ต่อ CISPR 22B, EMC 89/336/EEG, EN 50081-1, EN 61000-3-2, EN 50082-2, EN 60950ไมโครอินเวอร์เตอร์ (Micro-inverter) : UL1741-calss Aอัตราความล้มเหลวของส่วนประกอบทั่วไป: MIL HB-217Fข้อมูลจำเพาะอื่นๆ:IEC 503, IEC 62380 IEEE1547, IEEE929, IEEE-P929, IEEE SCC21, ANSI/NFPA-70 NEC690.2, NEC690.5, NEC690.6, NEC690.10, NEC690.11, NEC690.14, NEC690.17, NEC690.18, เอ็นอีซี690.64ข้อมูลจำเพาะหลักของโมดูลโซลาร์เซลล์ AC:อุณหภูมิในการทำงาน: -20℃ ~ 46℃, -40℃ ~ 60℃, -40℃ ~ 65℃, -40℃ ~ 85℃, -20 ~ 90℃แรงดันไฟขาออก: 120/240V, 117V, 120/208Vความถี่กำลังขับ: 60Hzข้อดีของโมดูล AC:1. พยายามเพิ่มการผลิตพลังงานของโมดูลพลังงานอินเวอร์เตอร์แต่ละตัวและติดตามพลังงานสูงสุด เนื่องจากการติดตามจุดพลังงานสูงสุดของส่วนประกอบแต่ละชิ้น ทำให้สามารถปรับปรุงการผลิตพลังงานของระบบโฟโตวอลตาอิคได้อย่างมาก ซึ่งสามารถเพิ่มขึ้นได้ถึง 25%2. โดยปรับแรงดันและกระแสไฟฟ้าของแผงโซลาร์เซลล์แต่ละแถวจนกระทั่งสมดุลกัน เพื่อหลีกเลี่ยงความไม่ตรงกันของระบบ3. แต่ละโมดูลมีฟังก์ชั่นการตรวจสอบเพื่อลดต้นทุนการบำรุงรักษาระบบและทำให้การทำงานมีเสถียรภาพและเชื่อถือได้มากขึ้น4. การกำหนดค่ามีความยืดหยุ่น และขนาดเซลล์แสงอาทิตย์สามารถติดตั้งในตลาดครัวเรือนได้ตามทรัพยากรทางการเงินของผู้ใช้งาน5. ไม่มีแรงดันไฟฟ้าสูง ปลอดภัยต่อการใช้งาน ติดตั้งง่าย รวดเร็ว ต้นทุนการบำรุงรักษาและการติดตั้งต่ำ ลดการพึ่งพาผู้ให้บริการติดตั้ง ทำให้ผู้ใช้สามารถติดตั้งระบบพลังงานแสงอาทิตย์ได้ด้วยตนเอง6. ค่าใช้จ่ายใกล้เคียงกับหรือต่ำกว่าอินเวอร์เตอร์แบบรวมศูนย์7. ติดตั้งง่าย (ลดเวลาในการติดตั้งได้ครึ่งหนึ่ง)8. ลดต้นทุนการจัดหาและติดตั้ง9. ลดต้นทุนโดยรวมของการผลิตพลังงานแสงอาทิตย์10. ไม่มีการเดินสายและโปรแกรมการติดตั้งพิเศษ11. ความล้มเหลวของโมดูล AC ตัวเดียวไม่ส่งผลกระทบต่อโมดูลหรือระบบอื่นๆ12. หากโมดูลผิดปกติ สวิตช์ไฟจะถูกตัดโดยอัตโนมัติ13. จำเป็นต้องใช้เพียงขั้นตอนการขัดจังหวะง่ายๆ สำหรับการบำรุงรักษา14. สามารถติดตั้งได้ทุกทิศทางและจะไม่ส่งผลกระทบต่อโมดูลอื่น ๆ ในระบบ15. สามารถเติมเต็มพื้นที่วางได้ทั้งหมด เพียงวางไว้ข้างใต้16. ลดสะพานระหว่างสาย DC และสายเคเบิล17. ลดการใช้ขั้วต่อ DC (DC connectors)18. ลดการตรวจจับไฟรั่วลงดิน DC และตั้งค่าอุปกรณ์ป้องกัน19. ลดการใช้กล่องรวมสาย DC20. ลดไดโอดบายพาสของโมดูลพลังงานแสงอาทิตย์21. ไม่จำเป็นต้องซื้อ ติดตั้ง และบำรุงรักษาอินเวอร์เตอร์ขนาดใหญ่22. ไม่จำเป็นต้องซื้อแบตเตอรี่23. แต่ละโมดูลได้รับการติดตั้งอุปกรณ์ป้องกันอาร์กซึ่งเป็นไปตามข้อกำหนดของ UL174124. โมดูลสื่อสารโดยตรงผ่านสายไฟฟ้ากระแสสลับโดยไม่ต้องตั้งค่าสายสื่อสารอื่น25. ส่วนประกอบลดลง 40%
    อ่านเพิ่มเติม
  • โมดูลโซลาร์เซลล์และไมโครอินเวอร์เตอร์ AC 3 โมดูลโซลาร์เซลล์และไมโครอินเวอร์เตอร์ AC 3
    Oct 08, 2024
    โมดูลโซลาร์เซลล์และไมโครอินเวอร์เตอร์ AC 3วิธีทดสอบโมดูล AC:1. การทดสอบประสิทธิภาพเอาต์พุต: อุปกรณ์ทดสอบโมดูลที่มีอยู่ สำหรับการทดสอบโมดูลที่ไม่เกี่ยวข้องกับอินเวอร์เตอร์2. การทดสอบความเครียดทางไฟฟ้า: ดำเนินการทดสอบวงจรอุณหภูมิภายใต้เงื่อนไขต่างๆ เพื่อประเมินคุณลักษณะของอินเวอร์เตอร์ภายใต้เงื่อนไขอุณหภูมิการทำงานและอุณหภูมิสแตนด์บาย3. การทดสอบความเค้นทางกล: ค้นหาไมโครอินเวอร์เตอร์ที่มีการยึดเกาะที่อ่อนแอและตัวเก็บประจุที่เชื่อมบนแผงวงจรพิมพ์4. ใช้เครื่องจำลองพลังงานแสงอาทิตย์สำหรับการทดสอบโดยรวม: ต้องใช้เครื่องจำลองพลังงานแสงอาทิตย์แบบพัลส์สถานะคงที่ที่มีขนาดใหญ่และมีความสม่ำเสมอที่ดี5. การทดสอบกลางแจ้ง: บันทึกกราฟเส้น IV เอาต์พุตของโมดูลและกราฟเส้นการแปลงประสิทธิภาพอินเวอร์เตอร์ในสภาพแวดล้อมกลางแจ้ง6. การทดสอบแบบรายบุคคล: ส่วนประกอบแต่ละส่วนของโมดูลจะได้รับการทดสอบแยกกันในห้อง และผลประโยชน์โดยรวมจะคำนวณโดยใช้สูตร7. การทดสอบการรบกวนทางแม่เหล็กไฟฟ้า: เนื่องจากโมดูลมีส่วนประกอบอินเวอร์เตอร์ จึงจำเป็นต้องประเมินผลกระทบต่อ EMC&EMI เมื่อโมดูลทำงานภายใต้เครื่องจำลองแสงแดดสาเหตุความล้มเหลวทั่วไปของโมดูล AC:1.ค่าความต้านทานไม่ถูกต้อง2. ไดโอดถูกกลับขั้ว3. สาเหตุการขัดข้องของอินเวอร์เตอร์: ตัวเก็บประจุไฟฟ้าขัดข้อง ความชื้น ฝุ่นละอองเงื่อนไขการทดสอบโมดูล AC:การทดสอบ HAST: 110℃/85%RH/206 ชม. (ห้องปฏิบัติการแห่งชาติ Sandia)การทดสอบอุณหภูมิสูง (UL1741): 50℃, 60℃วงจรอุณหภูมิ: -40℃←→90℃/200รอบการแช่แข็งแบบเปียก: 85℃/85%RH←→-40℃/10 รอบ, 110 รอบ (การทดสอบ Enphase-ALT)การทดสอบความร้อนแบบเปียก: 85℃/85%RH/1000 ชม.การทดสอบแรงดันสิ่งแวดล้อมหลายประเภท (MEOST): -50℃ ~ 120℃, การสั่นสะเทือน 30G ~ 50Gกันน้ำ: NEMA 6/24 ชั่วโมงการทดสอบฟ้าผ่า: ทนแรงดันไฟกระชากได้สูงถึง 6,000Vอื่นๆ (โปรดดู UL1703): การทดสอบการพ่นน้ำ การทดสอบความแข็งแรงแรงดึง การทดสอบป้องกันการเกิดอาร์กโมดูลที่เกี่ยวข้องกับพลังงานแสงอาทิตย์ MTBF:อินเวอร์เตอร์แบบดั้งเดิม 10 ~ 15 ปี อินเวอร์เตอร์ไมโคร 331 ปี โมดูล PV 600 ปี อินเวอร์เตอร์ไมโคร 600 ปี[อนาคต]การแนะนำไมโครอินเวอร์เตอร์:คำแนะนำ: ไมโครอินเวอร์เตอร์ (ไมโครอินเวอร์เตอร์) ที่ใช้กับโมดูลโซลาร์เซลล์ โดยแต่ละโมดูลโซลาร์เซลล์ DC จะติดตั้งไว้ ซึ่งจะช่วยลดโอกาสเกิดอาร์คได้ ไมโครอินเวอร์เตอร์สามารถเชื่อมต่อโดยตรงผ่านสายจ่ายไฟ AC เพื่อสื่อสารเครือข่ายโดยตรง เพียงแค่ติดตั้ง Powerline Ethernet Bridge (Powerline Ethernet Bridge) บนซ็อกเก็ต ก็ไม่จำเป็นต้องตั้งค่าสายสื่อสารอื่น ผู้ใช้สามารถดูสถานะการทำงานของแต่ละโมดูล (กำลังไฟออก อุณหภูมิของโมดูล ข้อความแจ้งข้อผิดพลาด รหัสระบุโมดูล) ได้โดยตรงผ่านหน้าเว็บคอมพิวเตอร์ iPhone, Blackberry, แท็บเล็ตคอมพิวเตอร์... ฯลฯ หากพบสิ่งผิดปกติ ก็สามารถซ่อมแซมหรือเปลี่ยนใหม่ได้ทันที ทำให้ระบบพลังงานแสงอาทิตย์ทั้งหมดทำงานได้อย่างราบรื่น เนื่องจากไมโครอินเวอร์เตอร์ติดตั้งไว้ด้านหลังโมดูล ดังนั้น ผลของรังสีอัลตราไวโอเลตที่ส่งผลต่อไมโครอินเวอร์เตอร์จึงต่ำเช่นกันข้อมูลจำเพาะไมโครอินเวอร์เตอร์:UL 1741 CSA 22.2, CSA 22.2, หมายเลข 107.1-1 IEEE 1547 IEEE 929 FCC 47CFR, ส่วนที่ 15, คลาส B สอดคล้องกับมาตรฐานไฟฟ้าแห่งชาติ (NEC 1999-2008) EIA-IS-749 (การทดสอบอายุการใช้งานแอปพลิเคชันหลักที่แก้ไข ข้อกำหนดสำหรับการใช้งานตัวเก็บประจุ)การทดสอบไมโครอินเวอร์เตอร์:1. การทดสอบความน่าเชื่อถือของไมโครอินเวอร์เตอร์: น้ำหนักไมโครอินเวอร์เตอร์ +65 ปอนด์ *4 ครั้ง2. การทดสอบกันน้ำของไมโครอินเวอร์เตอร์: NEMA 6[การทำงานต่อเนื่อง 1 เมตรในน้ำเป็นเวลา 24 ชั่วโมง]3. การแช่แข็งแบบเปียกตามวิธีการทดสอบ IEC61215: 85℃/85%RH←→-45℃/110 วัน4. การทดสอบอายุการใช้งานที่เร่งขึ้นของไมโครอินเวอร์เตอร์ [รวมทั้งหมด 110 วัน การทดสอบแบบไดนามิกที่กำลังไฟที่กำหนด ทำให้มั่นใจได้ว่าไมโครอินเวอร์เตอร์จะมีอายุการใช้งานได้มากกว่า 20 ปี] :ขั้นตอนที่ 1: การแช่แข็งแบบเปียก: 85℃/85%RH←→-45℃/10 วันขั้นตอนที่ 2: วงจรอุณหภูมิ: -45℃←→85℃/50 วันขั้นตอนที่ 3: ความร้อนชื้น: 85℃/85%RH/50 วัน
    อ่านเพิ่มเติม
1 2
รวมทั้งหมด2หน้า

ฝากข้อความ

ฝากข้อความ
หากคุณสนใจผลิตภัณฑ์ของเราและต้องการทราบรายละเอียดเพิ่มเติม โปรดฝากข้อความไว้ที่นี่ เราจะตอบกลับคุณโดยเร็วที่สุด
ส่ง

บ้าน

สินค้า

วอทส์แอพพ์

ติดต่อเรา