แบนเนอร์
บ้าน

ห้องทดสอบอุณหภูมิสูงและต่ำ

ห้องทดสอบอุณหภูมิสูงและต่ำ

  • Lab Two-Chamber Thermal Shock Chamber
    Nov 03, 2025
    The two-chamber thermal shock chamber is a highly reliable environmental testing device specifically designed for evaluating the ability of products to withstand extreme temperature changes. It simulates harsh temperature shock conditions to rapidly expose the possible failures of materials, electronic components, automotive parts and aerospace equipment during rapid thermal expansion and contraction, such as cracking, performance degradation and connection faults. It is a key tool for improving product quality and reliability. The core design concept of this device lies in efficiency and harshness. It has two independently controlled test chambers inside: a high-temperature chamber and a low-temperature chamber, which are respectively maintained at the set extreme temperatures continuously. The sample to be tested is placed in an automatic mechanical basket. During the test, the basket will be rapidly switched between the high-temperature zone and the low-temperature zone under the program control, instantly exposing the sample to a huge temperature difference environment, thus achieving the true "thermal shock" effect. Compared with another mainstream three-chamber (static) impact chamber, the significant advantage of the two-chamber type lies in its extremely fast temperature conversion speed and short temperature recovery time, ensuring the strictness and consistency of the test conditions. It is highly suitable for testing samples with sturdy structures that can withstand mechanical movement, and the testing efficiency is extremely high. Its working principle determines that during the testing process, the temperature fluctuation of the high and low temperature chamber is small, it can quickly return to the set point, and is not significantly affected by the sample load. This equipment is widely used in fields such as semiconductors, integrated circuits, national defense science and technology, automotive electronics, and new material research and development, for conducting reliability tests as required by various international standards. Its main technical parameters include a wide temperature range (high temperatures up to +150°C to +200°C, low temperatures down to -40°C to -65°C or even lower), precise temperature control accuracy, and customizable sample area sizes. The Lab two-chamber thermal shock chamber, with its irreplaceable rapid temperature change capability, has become the ultimate touchstone for testing the adaptability and durability of products in extreme temperature environments, providing a strong guarantee for the precision manufacturing and reliability verification of modern industry.
    อ่านเพิ่มเติม
  • Dragon Heat Flow Meter Temperature Control Test
    Oct 29, 2025
    Temperature control tests are usually conducted under two conditions: no-load (without sample placement) and load (with standard samples or actual samples being tested placed). The basic testing steps are as follows:   1. Preparatory work: Ensure that the heat flow meter has been fully preheated and is in a stable state. Prepare high-precision temperature sensors that have undergone metrological calibration (such as multiple platinum resistance PT100), and their accuracy should be much higher than the claimed indicators of the heat flow meter to be measured. 2. Temperature uniformity test: Multiple calibrated temperature sensors are arranged at different positions within the working area of the heat flow meter's heating plate (such as the center, four corners, edges, etc.). Set one or more typical test temperature points (such as -20°C, 25°C, 80°C). After the system reaches thermal stability, simultaneously record the temperature values of all sensors. Calculate the maximum, minimum and standard deviation of these readings to evaluate the uniformity. 3. Temperature control stability and accuracy test: Fix a calibrated temperature sensor at the center of the heating plate (or closely attach it to the built-in sensor of the instrument). Set the target temperature and start the temperature control. Record the entire process from the start to reaching the target temperature (for analyzing response speed and overshoot). After reaching the target temperature, continuously record for at least 1-2 hours (or as per standard requirements), with a sampling frequency high enough (such as once per second), and analyze the recorded data. 4. Load test: Place standard reference materials with known thermal physical properties or typical samples to be tested between the hot plates. Repeat step 3 and observe the changes in temperature control performance under load conditions. Load will directly affect the thermal inertia of the system, thereby influencing the response speed and stability.   When you are choosing or using a heat flow meter, be sure to carefully review the specific parameters regarding temperature control performance in its technical specification sheet and understand under what conditions (no-load/load) these parameters were measured. Lab will provide clear and verifiable temperature control test data and reports.
    อ่านเพิ่มเติม
  • How is over-temperature protection carried out in a temperature test chamber?
    Oct 23, 2025
    The over-temperature protection of the temperature test chamber is a multi-level and multi-redundant safety system. Its core purpose is to prevent the temperature inside the chamber from rising out of control due to equipment failure, thereby protecting the safety of the test samples, the test chamber itself and the laboratory environment.   The protection system usually consists of the following key parts working together: 1. Sensor: The main sensor is used for the normal temperature control of the test chamber and provides feedback signals to the main controller. An independent over-temperature protection sensor is the key to a safety system. It is a temperature-sensing element independent of the main control temperature system (usually a platinum resistance or thermocouple), which is placed by strategically at the position within the box that best represents the risk of overheating (such as near the heater outlet or on the top of the working chamber). Its sole task is to monitor over-temperature. 2. Processing unit: The main controller receives signals from the main sensor and executes the set temperature program. The independent over-temperature protector, as an independent hardware device, is specifically designed to receive and process the signals from the over-temperature protection sensor. It does not rely on the main controller. Even if the main controller crashes or experiences a serious malfunction, it can still operate normally. 3. Actuator: The main controller controls the on and off of the heater and the cooler. The safety relay/solid-state relay receives the signal sent by the over-temperature protector and directly cuts off the power supply circuit of the heater. This is the final execution action.   The over-temperature protection of the temperature test chamber is a multi-level, hard-wire connected safety system designed based on the concepts of "redundancy" and "independence". It does not rely on the main control system. Through independent sensors and controllers, when a dangerous temperature is detected, it directly and forcibly cuts off the heating energy and notifies the user through sound and light alarms, thus forming a complete and reliable safety closed loop.
    อ่านเพิ่มเติม
  • The Applicability of Temperature Test Chambers to the Testing of Household Environmental Products
    Oct 18, 2025
    A variety of products used in home environments (more common test objects) such as televisions, air conditioners, refrigerators, washing machines, smart speakers, routers, etc., as well as environmental protection products used to improve the home environment: such as air purifiers, fresh air systems, water purifiers, humidifiers/dehumidifiers, etc. No matter which category it is, as long as it needs to work stably for a long time in a home environment, it must undergo strict environmental reliability tests. The high and low temperature test chamber is precisely the core equipment for accomplishing this task.   The home environment is not always warm and pleasant, and products will face various harsh challenges in actual use. This mainly includes regional climate differences, ranging from the severe cold in Northeast China (below -30°C) to the scorching heat in Hainan (up to over 60°C in the car or on the balcony). High-temperature scenarios such as kitchens close to stoves, balconies exposed to direct sunlight, and stuffy attics, etc. Or low-temperature scenarios: warehouses/balconies without heating in northern winters, or near the freezer of refrigerators. The high and low temperature test chamber, by simulating these conditions, "accelerates" the aging of products in the laboratory and exposes problems in advance.   The actual test cases mainly cover the following aspects: 1. The smart TV was continuously operated at a high temperature of 55°C for 8 hours to test its heat dissipation design and prevent screen flickering and system freezing caused by overheating of the mainboard. 2. For products with lithium batteries (such as cordless vacuum cleaners and power tools), conduct charge and discharge cycles at -10°C to assess the battery performance and safety at low temperatures and prevent over-discharge or fire risks. 3. The air purifier (with both types of "environmental product" attributes) undergoes dozens of temperature cycles between -20°C and 45°C to ensure that its plastic air ducts, motor fixing frames and other structures will not crack or produce abnormal noises due to repeated thermal expansion and contraction. 4. Smart door lock: High-temperature and high-humidity test (such as 40°C, 93%RH) to prevent internal circuits from getting damp and short-circuited, which could lead to fingerprint recognition failure or the motor being unable to drive the lock tongue.   High and low temperature test chambers are not only applicable but also indispensable for the testing of household environmental products. By precisely controlling temperature conditions, it can ensure user safety and prevent the risk of fire or electric shock caused by overheating or short circuits. Ensure that the product can work stably in different climates and home environments to reduce after-sales malfunctions. And it can predict the service life of the product through accelerated testing. Therefore, both traditional home appliance giants and emerging smart home companies will take high and low temperature testing as a standard step in their product development and quality control processes.
    อ่านเพิ่มเติม
  • หลักการปรับสมดุลอุณหภูมิภายในห้องทดสอบด้วยวาล์วอากาศ
    Sep 22, 2025
    หลักการสำคัญคือระบบป้อนกลับเชิงลบแบบวงปิดที่ควบคุม "ความร้อน - การวัด - การควบคุม" กล่าวโดยง่ายคือการควบคุมกำลังขององค์ประกอบความร้อนภายในกล่องอย่างแม่นยำ เพื่อต่อต้านการกระจายความร้อนที่เกิดจากสภาพแวดล้อมภายนอก เพื่อรักษาอุณหภูมิทดสอบให้คงที่สูงกว่าอุณหภูมิแวดล้อม กระบวนการที่วาล์วอากาศรักษาอุณหภูมิให้คงที่นั้นเป็นกระบวนการวงปิดแบบไดนามิกและปรับอย่างต่อเนื่อง: ขั้นแรก ให้ตั้งค่าอุณหภูมิเป้าหมาย เซ็นเซอร์วัดอุณหภูมิจะวัดอุณหภูมิจริงภายในกล่องแบบเรียลไทม์ และส่งสัญญาณไปยังตัวควบคุม PIDเมื่อตัวควบคุม PID คำนวณค่าความผิดพลาด ก็จะคำนวณกำลังความร้อนที่ต้องปรับตามค่าความผิดพลาดผ่านอัลกอริทึม PID โดยอัลกอริทึมจะพิจารณาปัจจัยสามประการP (สัดส่วน) : ค่าความผิดพลาดของกระแสไฟฟ้ามีขนาดใหญ่เท่าใด ยิ่งค่าความผิดพลาดมากเท่าใด ช่วงการปรับกำลังความร้อนก็จะกว้างขึ้นเท่านั้นI (ปริพันธ์) : การสะสมของข้อผิดพลาดในช่วงระยะเวลาหนึ่ง ใช้เพื่อกำจัดข้อผิดพลาดแบบคงที่ (เช่น หากมีความคลาดเคลื่อนเล็กน้อยอยู่เสมอ เทอมปริพันธ์จะค่อยๆ เพิ่มกำลังเพื่อกำจัดข้อผิดพลาดนั้นให้หมดไป)D (ดิฟเฟอเรนเชียล) : อัตราการเปลี่ยนแปลงของค่าความคลาดเคลื่อนของกระแสไฟฟ้า หากอุณหภูมิใกล้ถึงเป้าหมายอย่างรวดเร็ว ระบบจะลดกำลังความร้อนล่วงหน้าเพื่อป้องกัน "โอเวอร์ชูต"3. ตัวควบคุม PID ส่งสัญญาณที่คำนวณแล้วไปยังตัวควบคุมกำลังขององค์ประกอบความร้อน (เช่น รีเลย์โซลิดสเตต SSR) เพื่อควบคุมแรงดันไฟฟ้าหรือกระแสไฟฟ้าที่ใช้กับลวดความร้อนอย่างแม่นยำ จึงควบคุมการสร้างความร้อนได้4. พัดลมหมุนเวียนทำงานอย่างต่อเนื่องเพื่อให้แน่ใจว่าความร้อนที่เกิดจากความร้อนจะกระจายอย่างรวดเร็วและสม่ำเสมอ ขณะเดียวกันยังส่งสัญญาณการเปลี่ยนแปลงของเซ็นเซอร์อุณหภูมิกลับไปยังตัวควบคุมอย่างรวดเร็ว ทำให้ระบบตอบสนองได้ทันท่วงที ตัวปรับสมดุลวาล์วลมจะวัดปริมาตรอากาศ ในขณะที่ความหนาแน่นของอากาศจะแปรผันตามอุณหภูมิ ภายใต้ค่าความดันแตกต่างเดียวกัน อัตราการไหลของมวลหรืออัตราการไหลของปริมาตรที่สอดคล้องกับอากาศที่มีความหนาแน่นต่างกันจะแตกต่างกัน ดังนั้น อุณหภูมิจึงต้องคงที่ที่ค่าคงที่ที่ทราบ เพื่อให้ไมโครโปรเซสเซอร์ภายในเครื่องมือสามารถคำนวณค่าปริมาตรอากาศได้อย่างแม่นยำภายใต้สภาวะมาตรฐานโดยอ้างอิงจากค่าความดันแตกต่างที่วัดได้โดยใช้สูตรที่ตั้งไว้ หากอุณหภูมิไม่คงที่ ผลการวัดจะไม่น่าเชื่อถือ
    อ่านเพิ่มเติม
  • การสร้างสภาพแวดล้อมการทดสอบห้องทดสอบที่ปลอดภัย
    Sep 16, 2025
    กุญแจสำคัญในการสร้างสภาพแวดล้อมการทดสอบที่ปลอดภัยสำหรับห้องปฏิบัติการ ห้องทดสอบอุณหภูมิสูงและต่ำ อยู่ที่การรับรองความปลอดภัยส่วนบุคคล ความปลอดภัยของอุปกรณ์ ความปลอดภัยของชิ้นทดสอบ และความแม่นยำของข้อมูล1.ข้อควรพิจารณาเรื่องความปลอดภัยส่วนบุคคลก่อนเปิดประตูห้องอุณหภูมิสูงเพื่อนำตัวอย่างออกมา จำเป็นต้องสวมอุปกรณ์ป้องกันอุณหภูมิสูงและต่ำอย่างถูกต้อง เมื่อปฏิบัติงานที่อาจทำให้เกิดการกระเด็นหรือการรั่วไหลของก๊าซร้อน/เย็นจัด ขอแนะนำให้สวมหน้ากากป้องกันหรือแว่นตานิรภัยควรติดตั้งห้องทดสอบในห้องปฏิบัติการที่มีการระบายอากาศที่ดี และหลีกเลี่ยงการใช้งานในพื้นที่จำกัด การทดสอบที่อุณหภูมิสูงอาจปล่อยสารระเหยออกจากชิ้นงานทดสอบ การระบายอากาศที่ดีสามารถป้องกันการสะสมของก๊าซอันตรายได้ตรวจสอบให้แน่ใจว่าสายไฟมีคุณสมบัติตรงตามข้อกำหนดของอุปกรณ์ และสายดินต้องเชื่อมต่ออย่างแน่นหนา ที่สำคัญที่สุดคือ ห้ามสัมผัสปลั๊กไฟ สวิตช์ และตัวอย่างด้วยมือเปียกโดยเด็ดขาด เพื่อป้องกันไฟฟ้าช็อต 2. ติดตั้งอุปกรณ์ให้ถูกต้องต้องเว้นระยะห่างความปลอดภัยขั้นต่ำตามที่ผู้ผลิตกำหนด (โดยปกติอย่างน้อย 50-100 เซนติเมตร) ไว้ที่ด้านหลัง ด้านบน และด้านข้างทั้งสองข้างของอุปกรณ์ เพื่อให้คอนเดนเซอร์ คอมเพรสเซอร์ และระบบระบายความร้อนอื่นๆ ทำงานได้ตามปกติ การระบายอากาศที่ไม่ดีอาจทำให้อุปกรณ์ร้อนเกินไป ประสิทธิภาพลดลง และอาจเกิดเพลิงไหม้ได้ขอแนะนำให้จัดเตรียมสายไฟเฉพาะสำหรับห้องทดสอบเพื่อหลีกเลี่ยงการใช้วงจรร่วมกับอุปกรณ์กำลังสูงอื่นๆ (เช่น เครื่องปรับอากาศและเครื่องมือขนาดใหญ่) ซึ่งอาจทำให้เกิดความผันผวนของแรงดันไฟฟ้าหรือสะดุดได้อุณหภูมิแวดล้อมสำหรับการทำงานของอุปกรณ์ควรอยู่ระหว่าง 5°C ถึง 30°C อุณหภูมิแวดล้อมที่สูงเกินไปจะเพิ่มภาระให้กับคอมเพรสเซอร์อย่างมาก ส่งผลให้ประสิทธิภาพการทำความเย็นลดลงและเกิดความผิดปกติ โปรดทราบว่าไม่ควรติดตั้งอุปกรณ์ในที่ที่มีแสงแดดส่องโดยตรง ใกล้แหล่งความร้อน หรือในสถานที่ที่มีการสั่นสะเทือนรุนแรง 3. การรับรองความถูกต้องและความสามารถในการทำซ้ำของการทดสอบควรวางตัวอย่างไว้ตรงกลางห้องทำงานภายในกล่อง ควรเว้นระยะห่างระหว่างตัวอย่างและผนังกล่องให้เพียงพอ (โดยปกติแนะนำให้เว้นระยะห่างมากกว่า 50 มม.) เพื่อให้อากาศภายในกล่องไหลเวียนได้อย่างราบรื่นและอุณหภูมิภายในกล่องคงที่หลังจากดำเนินการทดสอบอุณหภูมิสูงและความชื้นสูง (เช่น ในห้องที่มีอุณหภูมิและความชื้นคงที่) หากจำเป็นต้องทดสอบที่อุณหภูมิต่ำ ควรดำเนินการลดความชื้นเพื่อป้องกันการเกิดน้ำแข็งมากเกินไปภายในห้อง ซึ่งอาจส่งผลต่อประสิทธิภาพของอุปกรณ์ได้ห้ามทำการทดสอบสารไวไฟ สารระเบิด สารกัดกร่อนสูง และสารระเหยง่ายโดยเด็ดขาด ยกเว้นห้องทดสอบป้องกันการระเบิดที่ออกแบบมาเป็นพิเศษสำหรับวัตถุประสงค์นี้ ห้ามวางสินค้าอันตราย เช่น แอลกอฮอล์และน้ำมันเบนซิน ในห้องทดสอบอุณหภูมิสูงและต่ำทั่วไปโดยเด็ดขาด 4. ข้อกำหนดการปฏิบัติงานด้านความปลอดภัยและขั้นตอนฉุกเฉินก่อนใช้งาน ให้ตรวจสอบว่าประตูตู้ปิดสนิทดีหรือไม่ และฟังก์ชันการล็อกประตูเป็นปกติหรือไม่ ตรวจสอบว่าตู้สะอาดและไม่มีสิ่งแปลกปลอมใดๆ ตรวจสอบว่าเส้นโค้งอุณหภูมิที่ตั้งไว้ (โปรแกรม) ถูกต้องหรือไม่ในช่วงระยะเวลาทดสอบ จำเป็นต้องตรวจสอบเป็นประจำว่าสถานะการทำงานของอุปกรณ์เป็นปกติ และมีเสียงหรือสัญญาณเตือนผิดปกติใดๆ หรือไม่มาตรฐานการจัดการและการวางตัวอย่าง: สวมถุงมืออุณหภูมิสูงและต่ำอย่างถูกต้อง หลังจากเปิดประตู ให้หันตัวไปด้านข้างเล็กน้อยเพื่อหลีกเลี่ยงคลื่นความร้อนที่ใบหน้า นำตัวอย่างออกอย่างรวดเร็วและระมัดระวัง แล้วนำไปวางไว้ในบริเวณที่ปลอดภัยการรับมือกับเหตุฉุกเฉิน: ควรทำความคุ้นเคยกับตำแหน่งของปุ่มหยุดฉุกเฉินของอุปกรณ์ หรือวิธีการตัดแหล่งจ่ายไฟหลักอย่างรวดเร็วในกรณีฉุกเฉิน ควรมีถังดับเพลิงคาร์บอนไดออกไซด์ (เหมาะสำหรับเพลิงไหม้จากไฟฟ้า) ไว้ใกล้ ๆ แทนที่จะใช้ถังดับเพลิงชนิดน้ำหรือโฟม
    อ่านเพิ่มเติม
  • คู่มือการทดสอบแรงดันต่ำของห้องทดสอบสามแบบในห้องปฏิบัติการ
    Sep 13, 2025
    ระบบแกนหลักของ ห้องทดสอบแบบสามชุด ประกอบด้วยห้องทดสอบแบบรับแรงดัน ระบบสุญญากาศ ระบบควบคุมอุณหภูมิและความชื้นแบบพิเศษ และตัวควบคุมร่วมความแม่นยำสูง โดยพื้นฐานแล้ว เครื่องทดสอบนี้เป็นชุดอุปกรณ์ที่ซับซ้อนซึ่งผสานรวมห้องทดสอบสภาพแวดล้อมอุณหภูมิ/ความชื้น โต๊ะสั่นสะเทือน และระบบสุญญากาศ (จำลองสูง) เข้าด้วยกัน กระบวนการทดสอบความดันต่ำเป็นกระบวนการควบคุมร่วมที่แม่นยำ ยกตัวอย่างเช่น การทดสอบอุณหภูมิต่ำ-ความดันต่ำ กระบวนการทดสอบมีดังนี้: 1. ขั้นตอนการเตรียม: ติดตั้งตัวอย่างบนพื้นผิวโต๊ะสั่นภายในกล่องให้แน่น (หากไม่ต้องการการสั่นสะเทือน ให้ติดตั้งบนชั้นวางตัวอย่าง) ปิดและล็อคประตูกล่องเพื่อให้แน่ใจว่าแถบปิดผนึกความแข็งแรงสูงทำงานได้อย่างมีประสิทธิภาพ ตั้งค่าโปรแกรมการทดสอบทั้งหมดบนอินเทอร์เฟซควบคุม ซึ่งประกอบด้วย: เส้นโค้งความดัน เส้นโค้งอุณหภูมิ เส้นโค้งความชื้น และเส้นโค้งการสั่นสะเทือน2. การดูดฝุ่นและทำความเย็น: ระบบควบคุมจะเริ่มการทำงานของปั๊มสุญญากาศ และวาล์วสุญญากาศจะเปิดขึ้นเพื่อเริ่มดูดอากาศภายในกล่อง ในขณะเดียวกัน ระบบทำความเย็นก็เริ่มทำงาน โดยส่งอากาศเย็นเข้าไปในกล่อง และอุณหภูมิก็เริ่มลดลง ระบบควบคุมจะประสานงานความเร็วในการสูบของปั๊มสุญญากาศและกำลังของระบบทำความเย็นอย่างไดนามิก เนื่องจากเมื่ออากาศบางลง ประสิทธิภาพการนำความร้อนจะลดลงอย่างมาก และความยากลำบากในการทำความเย็นก็จะเพิ่มขึ้น ระบบอาจไม่เย็นลงอย่างสมบูรณ์จนกว่าความดันอากาศจะลดลงถึงระดับหนึ่ง3. ขั้นตอนการบำรุงรักษาแรงดันต่ำ/อุณหภูมิต่ำ: เมื่อทั้งแรงดันและอุณหภูมิถึงค่าที่ตั้งไว้ ระบบจะเข้าสู่สถานะการบำรุงรักษา เนื่องจากมีการรั่วไหลเพียงเล็กน้อยในกล่องใดๆ เซ็นเซอร์แรงดันจะตรวจสอบแรงดันอากาศแบบเรียลไทม์ เมื่อแรงดันอากาศเกินค่าที่ตั้งไว้ ปั๊มสุญญากาศจะเริ่มสูบลมเล็กน้อยโดยอัตโนมัติ เพื่อคงแรงดันให้อยู่ในช่วงที่แม่นยำมาก4. การเพิ่มความชื้นเป็นขั้นตอนที่ซับซ้อนที่สุด หากจำเป็นต้องจำลองความชื้นสูงในสภาพแวดล้อมที่สูงและมีความกดอากาศต่ำ ระบบควบคุมจะเปิดใช้งานเครื่องกำเนิดไอน้ำภายนอก จากนั้นจะค่อยๆ "ฉีด" ไอน้ำที่เกิดขึ้นเข้าไปในกล่องแรงดันต่ำผ่านวาล์วควบคุมแรงดันและการวัดแบบพิเศษ และเซ็นเซอร์ความชื้นจะทำหน้าที่ควบคุมแบบป้อนกลับ5. หลังจากสิ้นสุดระยะเวลาการทดสอบ ระบบจะเข้าสู่ขั้นตอนการกู้คืน ตัวควบคุมจะเปิดวาล์วระบายความดันหรือวาล์วฉีดอากาศอย่างช้าๆ เพื่อให้อากาศแห้งที่ผ่านการกรองแล้วไหลเข้าไปในกล่องอย่างช้าๆ ทำให้ความดันอากาศกลับสู่ความดันปกติอย่างต่อเนื่อง เมื่อความดันอากาศและอุณหภูมิคงที่ที่อุณหภูมิห้องและความดันปกติ ตัวควบคุมจะส่งสัญญาณเพื่อแจ้งสิ้นสุดการทดสอบ จากนั้นผู้ปฏิบัติงานสามารถเปิดประตูกล่องและนำตัวอย่างออกมาเพื่อทดสอบประสิทธิภาพและประเมินผลต่อไป การทดสอบแรงดันต่ำของห้องทดสอบแบบสามชุดนี้เป็นกระบวนการที่ซับซ้อนอย่างยิ่ง ซึ่งอาศัยการประสานงานอย่างแม่นยำของห้องทดสอบแรงดัน ระบบสุญญากาศอันทรงพลัง และระบบควบคุมอุณหภูมิและความชื้นที่ออกแบบมาเป็นพิเศษสำหรับสภาพแวดล้อมแรงดันต่ำ สามารถจำลองการทดสอบที่สมบุกสมบันของผลิตภัณฑ์ได้อย่างแท้จริงในสภาพแวดล้อมที่สูง สูง และสภาพแวดล้อมอื่นๆ เช่น ความเย็นจัด ออกซิเจนต่ำ (ความกดอากาศต่ำ) และความชื้น จึงเป็นอุปกรณ์ทดสอบสำคัญที่ขาดไม่ได้ในสาขาต่างๆ เช่น การบินและอวกาศ อุตสาหกรรมการทหาร และระบบอิเล็กทรอนิกส์ยานยนต์
    อ่านเพิ่มเติม
  • จะเลือกวิธีการทำความเย็นที่เหมาะสมสำหรับห้องทดสอบได้อย่างไร?
    Sep 09, 2025
    การระบายความร้อนด้วยอากาศและการระบายความร้อนด้วยน้ำเป็นสองวิธีหลักในอุปกรณ์ทำความเย็น ความแตกต่างพื้นฐานที่สุดระหว่างทั้งสองวิธีอยู่ที่ตัวกลางที่แตกต่างกันที่ใช้ในการระบายความร้อนที่เกิดจากระบบออกสู่สภาพแวดล้อมภายนอก การระบายความร้อนด้วยอากาศอาศัยอากาศ ในขณะที่การระบายความร้อนด้วยน้ำอาศัยน้ำ ความแตกต่างหลักนี้ทำให้เกิดความแตกต่างมากมายระหว่างทั้งสองวิธี ทั้งในด้านการติดตั้ง การใช้งาน ต้นทุน และสถานการณ์การใช้งาน 1. ระบบระบายความร้อนด้วยอากาศหลักการทำงานของระบบระบายความร้อนด้วยอากาศคือการบังคับให้อากาศไหลผ่านพัดลม พัดผ่านครีบระบายความร้อน ซึ่งเป็นส่วนประกอบหลักที่ทำหน้าที่ระบายความร้อนภายในคอนเดนเซอร์ เพื่อนำความร้อนออกจากคอนเดนเซอร์และกระจายออกสู่อากาศโดยรอบ การติดตั้งนั้นง่ายและยืดหยุ่นมาก อุปกรณ์สามารถทำงานได้ง่ายๆ เพียงแค่เชื่อมต่อกับแหล่งจ่ายไฟ และไม่จำเป็นต้องใช้อุปกรณ์เพิ่มเติม จึงทำให้มีความต้องการต่ำที่สุดสำหรับการปรับปรุงพื้นที่ ประสิทธิภาพการระบายความร้อนนี้ได้รับผลกระทบอย่างมากจากอุณหภูมิแวดล้อม ในฤดูร้อนหรือสภาพแวดล้อมที่มีอุณหภูมิสูงและการระบายอากาศไม่ดี เนื่องจากความแตกต่างของอุณหภูมิระหว่างอากาศและคอนเดนเซอร์ที่ลดลง ประสิทธิภาพการระบายความร้อนจะลดลงอย่างมาก ส่งผลให้ความสามารถในการทำความเย็นของอุปกรณ์ลดลงและการใช้พลังงานในการทำงานเพิ่มขึ้น นอกจากนี้ ยังอาจมีเสียงรบกวนจากพัดลมจำนวนมากระหว่างการทำงาน การลงทุนเริ่มต้นมักจะต่ำ และการบำรุงรักษาประจำวันค่อนข้างง่าย ภารกิจหลักคือการทำความสะอาดฝุ่นบนครีบคอนเดนเซอร์เป็นประจำเพื่อให้การระบายอากาศเป็นไปอย่างราบรื่น ต้นทุนการดำเนินงานหลักคือการใช้ไฟฟ้า ระบบระบายความร้อนด้วยอากาศเหมาะอย่างยิ่งสำหรับอุปกรณ์ขนาดเล็กและขนาดกลาง พื้นที่ที่มีไฟฟ้ามากมายแต่มีทรัพยากรน้ำน้อยหรือการเข้าถึงน้ำที่ไม่สะดวก ห้องปฏิบัติการที่มีอุณหภูมิสิ่งแวดล้อมที่ควบคุมได้ ตลอดจนโครงการที่มีงบประมาณจำกัดหรือโครงการที่ต้องการกระบวนการติดตั้งง่ายและรวดเร็ว 2. ระบบระบายความร้อนด้วยน้ำหลักการทำงานของระบบระบายความร้อนด้วยน้ำคือการใช้น้ำหมุนเวียนที่ไหลผ่านคอนเดนเซอร์ระบายความร้อนด้วยน้ำโดยเฉพาะเพื่อดูดซับและนำความร้อนออกจากระบบ โดยทั่วไปแล้ว น้ำร้อนที่ไหลผ่านจะถูกลำเลียงไปยังหอหล่อเย็นภายนอกเพื่อระบายความร้อน แล้วจึงนำกลับมาใช้ใหม่ การติดตั้งมีความซับซ้อนและต้องใช้ระบบน้ำภายนอกที่ครบครัน ซึ่งรวมถึงหอหล่อเย็น ปั๊มน้ำ ระบบท่อน้ำ และอุปกรณ์บำบัดน้ำ ซึ่งไม่เพียงแต่กำหนดตำแหน่งการติดตั้งอุปกรณ์เท่านั้น แต่ยังต้องการการวางแผนพื้นที่และโครงสร้างพื้นฐานที่สูงมาก ประสิทธิภาพการระบายความร้อนของระบบมีเสถียรภาพสูง โดยพื้นฐานแล้วจะไม่ได้รับผลกระทบจากการเปลี่ยนแปลงของอุณหภูมิภายนอก ในขณะเดียวกัน เสียงรบกวนจากการทำงานใกล้ตัวเครื่องก็ค่อนข้างต่ำ การลงทุนเริ่มต้นจึงค่อนข้างสูง นอกจากการใช้ไฟฟ้าแล้ว ยังมีค่าใช้จ่ายอื่นๆ อีก เช่น การใช้ทรัพยากรน้ำอย่างต่อเนื่องระหว่างการใช้งานประจำวัน งานบำรุงรักษายังมีความซับซ้อนและเป็นมืออาชีพมากขึ้น ซึ่งจำเป็นต่อการป้องกันการเกิดตะกรัน การกัดกร่อน และการเจริญเติบโตของจุลินทรีย์ ระบบระบายความร้อนด้วยน้ำเหมาะกับอุปกรณ์ระดับอุตสาหกรรมขนาดใหญ่ที่มีกำลังไฟสูง โรงงานที่มีอุณหภูมิแวดล้อมสูงหรือสภาพการระบายอากาศไม่ดี ตลอดจนสถานการณ์ที่ต้องการความเสถียรของอุณหภูมิและประสิทธิภาพการทำความเย็นที่สูงมาก การเลือกระหว่างระบบระบายความร้อนด้วยอากาศและระบบระบายความร้อนด้วยน้ำไม่ได้ขึ้นอยู่กับการตัดสินว่าระบบใดเหนือกว่าหรือด้อยกว่ากันโดยสิ้นเชิง แต่เป็นการค้นหาโซลูชันที่เหมาะสมที่สุดกับสภาพการใช้งานเฉพาะด้าน การตัดสินใจควรพิจารณาจากปัจจัยต่อไปนี้ ประการแรก อุปกรณ์กำลังสูงขนาดใหญ่มักนิยมใช้ระบบระบายความร้อนด้วยน้ำเพื่อให้ประสิทธิภาพการทำงานมีเสถียรภาพ ในขณะเดียวกัน จำเป็นต้องประเมินสภาพภูมิอากาศของห้องปฏิบัติการ (ไม่ว่าจะเป็นอากาศร้อน) สภาพแหล่งจ่ายน้ำ พื้นที่ติดตั้ง และเงื่อนไขการระบายอากาศ ประการที่สอง หากการลงทุนเริ่มต้นค่อนข้างต่ำ ระบบระบายความร้อนด้วยอากาศก็เป็นตัวเลือกที่เหมาะสม หากมุ่งเน้นประสิทธิภาพการใช้พลังงานและเสถียรภาพในระยะยาว และไม่สนใจต้นทุนการก่อสร้างเริ่มต้นที่ค่อนข้างสูง ระบบระบายความร้อนด้วยน้ำก็มีข้อได้เปรียบมากกว่า สุดท้าย จำเป็นต้องพิจารณาว่าตนเองมีความสามารถระดับมืออาชีพในการบำรุงรักษาระบบน้ำที่ซับซ้อนเป็นประจำหรือไม่
    อ่านเพิ่มเติม
  • หลักการทำงานของเครื่องทำความเย็นแบบอัดอากาศระบายความร้อนด้วยอากาศ Lab Companion หลักการทำงานของเครื่องทำความเย็นแบบอัดอากาศระบายความร้อนด้วยอากาศ Lab Companion
    Sep 06, 2025
    1.การบีบอัดสารทำความเย็นที่เป็นก๊าซอุณหภูมิต่ำและความดันต่ำจะไหลออกจากเครื่องระเหยและถูกคอมเพรสเซอร์ดูดเข้าไป คอมเพรสเซอร์จะทำงานกับก๊าซส่วนนี้ (ใช้พลังงานไฟฟ้า) และบีบอัดอย่างรุนแรง เมื่อสารทำความเย็นเปลี่ยนเป็นไอร้อนยวดยิ่งที่มีอุณหภูมิสูงและความดันสูง อุณหภูมิของไอจะสูงกว่าอุณหภูมิแวดล้อมมาก ทำให้เกิดสภาวะที่ความร้อนจะถูกระบายออกสู่ภายนอก2. การควบแน่นไอสารทำความเย็นอุณหภูมิสูงและแรงดันสูงจะเข้าสู่คอนเดนเซอร์ (โดยปกติจะเป็นตัวแลกเปลี่ยนความร้อนแบบท่อครีบที่ประกอบด้วยท่อทองแดงและครีบอะลูมิเนียม) พัดลมจะบังคับให้อากาศภายนอกพัดผ่านครีบคอนเดนเซอร์ จากนั้นไอสารทำความเย็นจะปล่อยความร้อนให้กับอากาศที่ไหลอยู่ภายในคอนเดนเซอร์ เนื่องจากการระบายความร้อน ไอสารทำความเย็นจะค่อยๆ ควบแน่นจากสถานะก๊าซไปเป็นของเหลวที่มีอุณหภูมิปานกลางและแรงดันสูง ณ จุดนี้ ความร้อนจะถูกถ่ายโอนจากระบบทำความเย็นไปยังสภาพแวดล้อมภายนอก3. การขยายตัวสารทำความเย็นเหลวที่มีอุณหภูมิปานกลางและแรงดันสูงจะไหลผ่านช่องแคบผ่านอุปกรณ์ควบคุมแรงดัน ซึ่งทำหน้าที่ควบคุมและลดแรงดัน คล้ายกับการใช้นิ้วปิดรูท่อน้ำ เมื่อแรงดันของสารทำความเย็นลดลงอย่างกะทันหัน อุณหภูมิก็จะลดลงอย่างรวดเร็วเช่นกัน กลายเป็นส่วนผสมสองเฟสของก๊าซและของเหลวที่มีอุณหภูมิต่ำและความดันต่ำ (หมอก)4. การระเหยส่วนผสมของก๊าซและของเหลวที่มีอุณหภูมิต่ำและความดันต่ำจะเข้าสู่เครื่องระเหย และพัดลมอีกตัวหนึ่งจะหมุนเวียนอากาศภายในกล่องผ่านครีบของเครื่องระเหยที่เย็น ของเหลวสารทำความเย็นจะดูดซับความร้อนของอากาศที่ไหลผ่านครีบในเครื่องระเหย ระเหยและกลายเป็นไออย่างรวดเร็ว และเปลี่ยนกลับเป็นก๊าซอุณหภูมิต่ำและความดันต่ำ เนื่องจากการดูดซับความร้อน อุณหภูมิของอากาศที่ไหลผ่านเครื่องระเหยจึงลดลงอย่างมาก ส่งผลให้ห้องทดสอบเย็นลง จากนั้น ก๊าซอุณหภูมิต่ำและความดันต่ำนี้จะถูกดึงกลับเข้าไปในคอมเพรสเซอร์อีกครั้ง เพื่อเริ่มต้นวงจรถัดไป ด้วยวิธีนี้ วงจรจะวนซ้ำไปซ้ำมาอย่างไม่มีที่สิ้นสุด ระบบทำความเย็นจะ "เคลื่อนย้าย" ความร้อนภายในกล่องออกสู่ภายนอกอย่างต่อเนื่อง และกระจายความร้อนออกสู่บรรยากาศผ่านพัดลม
    อ่านเพิ่มเติม
  • จุดสำคัญในการเลือกห้องทดสอบอุณหภูมิสูงและต่ำ จุดสำคัญในการเลือกห้องทดสอบอุณหภูมิสูงและต่ำ
    Jun 06, 2025
    8 ประเด็นสำคัญในการเลือก ห้องทดสอบอุณหภูมิสูงและต่ำ:1. ไม่ว่าจะเลือกสำหรับห้องทดสอบอุณหภูมิสูงและต่ำหรืออุปกรณ์ทดสอบอื่นๆ ก็ตาม จะต้องเป็นไปตามเงื่อนไขอุณหภูมิที่ระบุในข้อกำหนดการทดสอบ2. เพื่อให้แน่ใจว่าอุณหภูมิในห้องทดสอบสม่ำเสมอ สามารถเลือกโหมดการหมุนเวียนอากาศแบบบังคับหรือการหมุนเวียนอากาศแบบไม่บังคับได้ตามการกระจายความร้อนของตัวอย่าง3.ระบบทำความร้อนหรือทำความเย็นของห้องทดสอบอุณหภูมิสูงและต่ำไม่ควรมีผลต่อตัวอย่าง4. ห้องทดสอบควรสะดวกสำหรับชั้นวางตัวอย่างที่เกี่ยวข้องเพื่อวางตัวอย่าง และชั้นวางตัวอย่างจะไม่เปลี่ยนคุณสมบัติเชิงกลเนื่องจากการเปลี่ยนแปลงอุณหภูมิที่สูงและต่ำ5. ห้องทดสอบอุณหภูมิสูงและต่ำควรมีมาตรการป้องกัน เช่น มีหน้าต่างและไฟส่องสว่างสำหรับสังเกตการณ์ การตัดไฟ การป้องกันอุณหภูมิเกิน อุปกรณ์แจ้งเตือนต่างๆ6. มีฟังก์ชั่นการตรวจสอบระยะไกลตามความต้องการของลูกค้าหรือไม่7. ห้องทดสอบจะต้องมีอุปกรณ์นับอัตโนมัติ ไฟแสดงสถานะและบันทึก ระบบปิดเครื่องอัตโนมัติและอุปกรณ์เครื่องมืออื่นๆ เมื่อดำเนินการทดสอบแบบวงจร และจะต้องมีฟังก์ชันการบันทึกและการแสดงผลที่ดี8. ตามอุณหภูมิของตัวอย่าง มีวิธีการวัด 2 วิธี คือ เซ็นเซอร์อุณหภูมิลมบนและลมล่าง สามารถเลือกตำแหน่งและโหมดควบคุมของเซ็นเซอร์ควบคุมอุณหภูมิและความชื้นในห้องทดสอบอุณหภูมิสูงและต่ำได้ตามความต้องการในการทดสอบผลิตภัณฑ์ของลูกค้า เพื่อเลือกอุปกรณ์ที่เหมาะสม
    อ่านเพิ่มเติม
  • การอภิปรายสั้น ๆ เกี่ยวกับการใช้งานและการบำรุงรักษาห้องทดสอบสิ่งแวดล้อม
    May 10, 2025
    Ⅰ. การใช้อย่างถูกต้อง แล็บคอมพาเนียนเครื่องดนตรีของอุปกรณ์ทดสอบสิ่งแวดล้อมยังคงเป็นเครื่องมือประเภทหนึ่งที่มีความแม่นยำและมีมูลค่าสูง การทำงานและการใช้งานที่ถูกต้องไม่เพียงแต่ให้ข้อมูลที่แม่นยำแก่บุคลากรที่ทำการทดสอบเท่านั้น แต่ยังช่วยให้มั่นใจได้ว่าอุปกรณ์จะทำงานได้ปกติในระยะยาวและยืดอายุการใช้งานของอุปกรณ์อีกด้วย ประการแรก ก่อนที่จะทำการทดสอบสิ่งแวดล้อม จำเป็นต้องทำความคุ้นเคยกับประสิทธิภาพของตัวอย่างทดสอบ เงื่อนไขการทดสอบ ขั้นตอน และเทคนิคต่างๆ ความเข้าใจอย่างถ่องแท้เกี่ยวกับข้อมูลจำเพาะทางเทคนิคและโครงสร้างของอุปกรณ์ทดสอบ โดยเฉพาะการทำงานและการทำงานของตัวควบคุม ถือเป็นสิ่งสำคัญ การอ่านคู่มือการใช้งานอุปกรณ์อย่างละเอียดสามารถป้องกันการทำงานผิดพลาดที่เกิดจากข้อผิดพลาดในการทำงาน ซึ่งอาจนำไปสู่ความเสียหายของตัวอย่างทดสอบหรือข้อมูลการทดสอบที่ไม่แม่นยำ ประการที่สอง เลือกอุปกรณ์ทดสอบที่เหมาะสม เพื่อให้แน่ใจว่าการทดสอบจะดำเนินไปอย่างราบรื่น ควรเลือกอุปกรณ์ที่เหมาะสมโดยพิจารณาจากลักษณะของตัวอย่างทดสอบ ควรรักษาอัตราส่วนที่เหมาะสมระหว่างปริมาตรตัวอย่างและความจุห้องทดสอบที่มีประสิทธิภาพ สำหรับตัวอย่างที่ระบายความร้อน ปริมาตรไม่ควรเกินหนึ่งในสิบของความจุที่มีประสิทธิภาพของห้องทดสอบ สำหรับตัวอย่างที่ไม่ทำความร้อน ปริมาตรไม่ควรเกินหนึ่งในห้า ตัวอย่างเช่น ทีวีสีขนาด 21 นิ้วที่กำลังทดสอบการเก็บอุณหภูมิอาจพอดีกับห้องทดสอบขนาด 1 ลูกบาศก์เมตร แต่จำเป็นต้องใช้ห้องทดสอบที่มีขนาดใหญ่กว่าเมื่อเปิดทีวีเนื่องจากความร้อนที่เกิดขึ้น ประการที่สาม จัดวางตัวอย่างทดสอบให้ถูกต้อง ควรวางตัวอย่างห่างจากผนังห้องทดสอบอย่างน้อย 10 ซม. ควรวางตัวอย่างหลายตัวอย่างในระนาบเดียวกันให้มากที่สุด การวางตัวอย่างไม่ควรกีดขวางช่องระบายอากาศหรือช่องรับอากาศ และควรเว้นพื้นที่รอบเซ็นเซอร์อุณหภูมิและความชื้นให้เพียงพอเพื่อให้มั่นใจว่าได้ค่าการอ่านที่ถูกต้อง ประการที่สี่ สำหรับการทดสอบที่ต้องการสื่อเพิ่มเติม จะต้องเพิ่มประเภทที่ถูกต้องตามข้อกำหนด เช่น น้ำที่ใช้ใน ห้องทดสอบความชื้น ต้องเป็นไปตามข้อกำหนดเฉพาะ: ค่าความต้านทานไม่ควรน้อยกว่า 500 Ω·m โดยทั่วไป น้ำประปาจะมีค่าความต้านทาน 10–100 Ω·m น้ำกลั่น 100–10,000 Ω·m และน้ำที่ผ่านการดีไอออนไนซ์ 10,000–100,000 Ω·m ดังนั้น จึงต้องใช้น้ำกลั่นหรือน้ำที่ผ่านการดีไอออนไนซ์ในการทดสอบความชื้น และต้องเป็นน้ำสะอาด เนื่องจากน้ำที่สัมผัสกับอากาศจะดูดซับคาร์บอนไดออกไซด์และฝุ่น ทำให้ค่าความต้านทานลดลงเมื่อเวลาผ่านไป น้ำบริสุทธิ์ที่มีจำหน่ายในท้องตลาดเป็นทางเลือกที่คุ้มต้นทุนและสะดวกสบาย ประการที่ห้า การใช้ห้องทดสอบความชื้นอย่างถูกต้อง ผ้าก๊อซหรือกระดาษที่ใช้ในห้องทดสอบความชื้นต้องเป็นไปตามมาตรฐานเฉพาะ ไม่ใช่ผ้าก๊อซชนิดใดก็ได้ที่สามารถทดแทนได้ เนื่องจากการอ่านค่าความชื้นสัมพัทธ์ได้มาจากความแตกต่างของอุณหภูมิของหลอดแห้งและหลอดเปียก (โดยเคร่งครัดแล้ว ยังได้รับอิทธิพลจากความดันบรรยากาศและการไหลของอากาศด้วย) อุณหภูมิของหลอดเปียกจึงขึ้นอยู่กับอัตราการดูดซับน้ำและอัตราการระเหย ซึ่งได้รับผลกระทบโดยตรงจากคุณภาพของผ้าก๊อซ มาตรฐานอุตุนิยมวิทยากำหนดให้ผ้าก๊อซหลอดเปียกต้องเป็น "ผ้าก๊อซหลอดเปียก" พิเศษที่ทำจากผ้าลินิน ผ้าก๊อซที่ไม่ถูกต้องอาจทำให้ควบคุมความชื้นได้ไม่แม่นยำ นอกจากนี้ ต้องติดตั้งผ้าก๊อซให้ถูกต้อง โดยมีความยาว 100 มม. พันรอบหัววัดเซ็นเซอร์ให้แน่น โดยให้หัววัดอยู่เหนือถ้วยน้ำ 25–30 มม. และจุ่มผ้าก๊อซลงในน้ำเพื่อให้ควบคุมความชื้นได้อย่างแม่นยำ Ⅱ. การบำรุงรักษาอุปกรณ์ทดสอบสิ่งแวดล้อมอุปกรณ์ทดสอบสิ่งแวดล้อมมีหลายประเภท แต่ที่ใช้กันทั่วไปคือห้องทดสอบอุณหภูมิสูง ห้องทดสอบอุณหภูมิต่ำ และห้องทดสอบความชื้น เมื่อไม่นานมานี้ ห้องทดสอบอุณหภูมิและความชื้นแบบรวมที่ผสานฟังก์ชันเหล่านี้เข้าด้วยกันได้รับความนิยม ห้องทดสอบเหล่านี้ซ่อมแซมได้ยากกว่าและเป็นตัวอย่างที่แสดงให้เห็นได้ชัดเจน ด้านล่างนี้ เราจะพูดถึงโครงสร้าง ความผิดปกติทั่วไป และวิธีการแก้ไขปัญหาสำหรับห้องทดสอบอุณหภูมิและความชื้น (1) โครงสร้างของห้องทดสอบอุณหภูมิและความชื้นทั่วไปนอกจากการทำงานที่เหมาะสมแล้ว เจ้าหน้าที่ทดสอบควรเข้าใจโครงสร้างของอุปกรณ์ ห้องทดสอบอุณหภูมิและความชื้นประกอบด้วยตัวห้อง ระบบหมุนเวียนอากาศ ระบบทำความเย็น ระบบทำความร้อน และระบบควบคุมความชื้น ระบบหมุนเวียนอากาศโดยทั่วไปจะมีทิศทางการไหลของอากาศที่ปรับได้ ระบบเพิ่มความชื้นอาจใช้หม้อต้มหรือวิธีการระเหยบนพื้นผิว ระบบทำความเย็นและลดความชื้นใช้วงจรทำความเย็นแบบปรับอากาศ ระบบทำความร้อนอาจใช้เครื่องทำความร้อนแบบครีบไฟฟ้าหรือการให้ความร้อนด้วยลวดต้านทานโดยตรง วิธีการวัดอุณหภูมิและความชื้นรวมถึงการทดสอบหลอดแห้ง-เปียกหรือเซ็นเซอร์ความชื้นโดยตรง อินเทอร์เฟซการควบคุมและการแสดงผลอาจมีตัวควบคุมอุณหภูมิและความชื้นแบบแยกหรือรวมกัน (2) ความผิดปกติทั่วไปและวิธีการแก้ไขปัญหาสำหรับ ห้องทดสอบอุณหภูมิและความชื้น1.ปัญหาการทดสอบอุณหภูมิสูง หากอุณหภูมิไม่ถึงค่าที่ตั้งไว้ ให้ตรวจสอบระบบไฟฟ้าเพื่อระบุความผิดปกติหากอุณหภูมิสูงขึ้นช้าเกินไป ให้ตรวจสอบระบบหมุนเวียนอากาศ ตรวจสอบให้แน่ใจว่าแดมเปอร์ได้รับการปรับอย่างถูกต้อง และมอเตอร์พัดลมทำงานได้หากเกิดอุณหภูมิเกิน ให้ปรับเทียบการตั้งค่า PID ใหม่หากอุณหภูมิสูงขึ้นจนควบคุมไม่ได้ ตัวควบคุมอาจชำรุดและจำเป็นต้องเปลี่ยน 2. ปัญหาการทดสอบอุณหภูมิต่ำ หากอุณหภูมิลดลงช้าเกินไปหรือกลับตัวหลังจากถึงจุดหนึ่ง: ตรวจสอบให้แน่ใจว่าห้องแห้งก่อนการทดสอบ ตรวจสอบว่าตัวอย่างไม่แน่นเกินไปจนกีดขวางการไหลเวียนของอากาศ หากตัดปัจจัยเหล่านี้ออกไป ระบบทำความเย็นอาจจำเป็นต้องได้รับการบำรุงรักษาจากมืออาชีพการดีดตัวของอุณหภูมิบ่อยครั้งเกิดจากสภาพแวดล้อมที่ไม่ดี (เช่น ระยะห่างด้านหลังห้องไม่เพียงพอหรืออุณหภูมิแวดล้อมที่สูง) 3.ปัญหาการทดสอบความชื้น หากความชื้นถึง 100% หรือเบี่ยงเบนจากเป้าหมายอย่างมีนัยสำคัญ: สำหรับความชื้น 100%: ตรวจสอบว่าผ้าก๊อซหลอดเปียกแห้งหรือไม่ ตรวจสอบระดับน้ำในอ่างเก็บน้ำของเซ็นเซอร์หลอดเปียกและระบบจ่ายน้ำอัตโนมัติ เปลี่ยนหรือทำความสะอาดผ้าก๊อซที่แข็งตัวหากจำเป็น สำหรับความชื้นต่ำ: ตรวจสอบแหล่งจ่ายน้ำและระดับหม้อน้ำของระบบเพิ่มความชื้น หากเป็นปกติ ระบบควบคุมไฟฟ้าอาจต้องได้รับการซ่อมแซมจากผู้เชี่ยวชาญ 4. ความผิดพลาดฉุกเฉินระหว่างการทำงาน หากอุปกรณ์ทำงานผิดปกติ แผงควบคุมจะแสดงรหัสข้อผิดพลาดพร้อมเสียงเตือน ผู้ปฏิบัติงานสามารถดูส่วนการแก้ไขปัญหาในคู่มือเพื่อระบุปัญหาและนัดหมายให้ผู้เชี่ยวชาญซ่อมแซมเพื่อกลับมาทดสอบได้ทันท่วงที อุปกรณ์ทดสอบสิ่งแวดล้อมอื่นๆ อาจแสดงปัญหาที่แตกต่างกัน ซึ่งควรวิเคราะห์และแก้ไขเป็นรายกรณี การบำรุงรักษาเป็นประจำจึงมีความจำเป็น รวมถึงการทำความสะอาดคอนเดนเซอร์ การหล่อลื่นชิ้นส่วนที่เคลื่อนไหว และการตรวจสอบระบบควบคุมไฟฟ้า มาตรการเหล่านี้มีความจำเป็นอย่างยิ่งในการรับรองอายุการใช้งานและความน่าเชื่อถือของอุปกรณ์
    อ่านเพิ่มเติม
  • เงื่อนไขการใช้งานห้องทดสอบอุณหภูมิสูงและต่ำและความดันต่ำ
    Feb 26, 2025
    เงื่อนไขที่หนึ่ง: เงื่อนไขด้านสิ่งแวดล้อม1. อุณหภูมิ: 15 ℃~35 ℃;2. ความชื้นสัมพัทธ์ : ไม่เกิน 85%;3. ความดันบรรยากาศ: 80kPa~106kPa4. ไม่มีแรงสั่นสะเทือนรุนแรงหรือก๊าซกัดกร่อนอยู่รอบๆ5. งดการสัมผัสแสงแดดโดยตรงหรือรังสีโดยตรงจากแหล่งความเย็นหรือความร้อนอื่นๆ6. ไม่มีการไหลเวียนของอากาศที่รุนแรงรอบๆ และเมื่อจำเป็นต้องบังคับให้อากาศโดยรอบไหลออกมา ไม่ควรเป่าลมไปที่อุปกรณ์โดยตรง7.ไม่มีสนามแม่เหล็กรอบ ๆ ห้องทดสอบ ซึ่งอาจไปรบกวนวงจรควบคุมได้8.ไม่มีฝุ่นละอองและสารกัดกร่อนสะสมในปริมาณสูงในบริเวณรอบๆ เงื่อนไขที่ 2: สภาพแหล่งจ่ายไฟ1. แรงดันไฟฟ้ากระแสสลับ: 220V ± 22V หรือ 380V ± 38V;2. ความถี่: 50Hz ± 0.5Hz.  เงื่อนไขการใช้งาน 3 : เงื่อนไขการจ่ายน้ำแนะนำให้ใช้น้ำประปาหรือน้ำหมุนเวียนที่เป็นไปตามเงื่อนไขต่อไปนี้: 1.อุณหภูมิของน้ำ: ไม่เกิน 30℃; 2.แรงดันน้ำ: 0.1MPa ถึง 0.3MPa; 3.คุณภาพน้ำ : เป็นไปตามมาตรฐานน้ำอุตสาหกรรม  เงื่อนไขการใช้งานที่สี่: โหลดสำหรับห้องทดสอบ โหลดห้องทดสอบจะต้องตรงตามเงื่อนไขต่อไปนี้พร้อมกัน: 1. มวลรวมของภาระ: มวลของภาระต่อปริมาตรพื้นที่ทำงานลูกบาศก์เมตรไม่ควรเกิน 80 กก. 2. ปริมาตรรวมของภาระ: ปริมาตรรวมของภาระไม่ควรเกิน 1/5 ของปริมาตรพื้นที่ทำงาน 3. การวางโหลด: ในพื้นที่หน้าตัดใดๆ ที่ตั้งฉากกับทิศทางการไหลของอากาศหลัก พื้นที่รวมของโหลดไม่ควรเกิน 1/3 ของพื้นที่หน้าตัดของพื้นที่ทำงาน โหลดจะต้องไม่กีดขวางการไหลของอากาศ  
    อ่านเพิ่มเติม
1 2 3 4 5
รวมทั้งหมด5หน้า

ฝากข้อความ

ฝากข้อความ
หากคุณสนใจผลิตภัณฑ์ของเราและต้องการทราบรายละเอียดเพิ่มเติม โปรดฝากข้อความไว้ที่นี่ เราจะตอบกลับคุณโดยเร็วที่สุด
ส่ง

บ้าน

สินค้า

วอทส์แอพพ์

ติดต่อเรา