แบนเนอร์
บ้าน

เครื่องทดสอบความร้อนและความเย็น

เอกสารสำคัญ
แท็ก

เครื่องทดสอบความร้อนและความเย็น

  • การทดสอบความน่าเชื่อถือของไดโอดเปล่งแสงเพื่อการสื่อสาร การทดสอบความน่าเชื่อถือของไดโอดเปล่งแสงเพื่อการสื่อสาร
    Oct 09, 2024
    การทดสอบความน่าเชื่อถือของไดโอดเปล่งแสงเพื่อการสื่อสารการตรวจสอบความล้มเหลวของไดโอดเปล่งแสงการสื่อสาร:จ่ายกระแสคงที่เพื่อเปรียบเทียบกำลังส่งออกแสง และระบุความล้มเหลวหากข้อผิดพลาดมากกว่า 10%การทดสอบเสถียรภาพทางกล:การทดสอบแรงกระแทก: 5 ครั้ง/แกน, 1500G, 0.5msการทดสอบการสั่นสะเทือน: 20G, 20 ~ 2000Hz, 4 นาที/รอบ, 4 รอบ/แกนการทดสอบการช็อกความร้อนของของเหลว: 100℃ (15 วินาที) ←→0℃ (5 วินาที)/5 รอบความต้านทานความร้อนจากการบัดกรี: 260℃/10 วินาที/1 ครั้งการยึดเกาะของบัดกรี: 250℃/5 วินาทีการทดสอบความทนทาน:การทดสอบการเสื่อมสภาพแบบเร่ง: 85℃/กำลังไฟ (กำลังไฟสูงสุดที่กำหนด)/5,000 ชั่วโมง, 10,000 ชั่วโมงการจัดเก็บที่อุณหภูมิสูง: อุณหภูมิการจัดเก็บสูงสุดที่กำหนด /2000 ชั่วโมงการทดสอบการเก็บรักษาที่อุณหภูมิต่ำ: อุณหภูมิการเก็บรักษาสูงสุดที่กำหนด /2,000 ชั่วโมงการทดสอบวงจรอุณหภูมิ: -40℃ (30 นาที) ←85℃ (30 นาที), RAMP: 10/นาที, 500 รอบการทดสอบความทนทานต่อความชื้น: 40℃/95%/56 วัน, 85℃/85%/2000 ชั่วโมง, เวลาในการปิดผนึกการทดสอบคัดกรององค์ประกอบไดโอดการสื่อสาร:การทดสอบคัดกรองอุณหภูมิ: 85℃/กำลังไฟ (กำลังไฟสูงสุดที่กำหนด)/96 ชั่วโมง การพิจารณาความล้มเหลวในการคัดกรอง: เปรียบเทียบกำลังไฟขาออกออปติคอลกับกระแสไฟคงที่ และพิจารณาความล้มเหลวหากข้อผิดพลาดมากกว่า 10%การทดสอบคัดกรองโมดูลไดโอดการสื่อสาร:ขั้นตอนที่ 1: การตรวจคัดกรองวงจรอุณหภูมิ: -40℃ (30 นาที) ←→85℃ (30 นาที), RAMP: 10 ครั้ง/นาที, 20 รอบ, ไม่มีแหล่งจ่ายไฟขั้นตอนที่ 2: การทดสอบคัดกรองอุณหภูมิ: 85℃/กำลังไฟ (กำลังไฟสูงสุดที่กำหนด)/96 ชั่วโมง   
    อ่านเพิ่มเติม
  • โมดูลโซลาร์เซลล์และไมโครอินเวอร์เตอร์ AC 1 โมดูลโซลาร์เซลล์และไมโครอินเวอร์เตอร์ AC 1
    Oct 09, 2024
    โมดูลโซลาร์เซลล์และไมโครอินเวอร์เตอร์ AC 1พลังงานเอาต์พุตโดยรวมของแผงเซลล์แสงอาทิตย์ลดลงอย่างมาก โดยเฉพาะอย่างยิ่งเนื่องจากความเสียหายของโมดูลบางส่วน (ลูกเห็บ แรงลม ความสั่นสะเทือนของลม แรงหิมะ ฟ้าผ่า) เงาในพื้นที่ สิ่งสกปรก มุมเอียง ทิศทาง อายุที่แตกต่างกัน รอยแตกร้าวเล็กๆ... ปัญหาเหล่านี้จะทำให้เกิดการจัดตำแหน่งการกำหนดค่าระบบที่ไม่ถูกต้อง ส่งผลให้ประสิทธิภาพเอาต์พุตมีข้อบกพร่องลดลง ซึ่งยากที่จะแก้ไขอินเวอร์เตอร์แบบรวมศูนย์แบบดั้งเดิม อัตราส่วนต้นทุนการผลิตพลังงานแสงอาทิตย์: โมดูล (40 ~ 50%) การก่อสร้าง (20 ~ 30%) อินเวอร์เตอร์ (
    อ่านเพิ่มเติม
  • โมดูลโซลาร์เซลล์และไมโครอินเวอร์เตอร์ AC 2 โมดูลโซลาร์เซลล์และไมโครอินเวอร์เตอร์ AC 2
    Oct 08, 2024
    โมดูลโซลาร์เซลล์และไมโครอินเวอร์เตอร์ AC 2ข้อมูลจำเพาะการทดสอบโมดูล AC:การรับรอง ETL: UL 1741, มาตรฐาน CSA 22.2, มาตรฐาน CSA 22.2 หมายเลข 107.1-1, IEEE 1547, IEEE 929โมดูล PV: UL1703จดหมายข่าว: 47CFR, ส่วนที่ 15, ชั้น Bระดับการป้องกันไฟกระชาก: IEEE 62.41 คลาส Bรหัสไฟฟ้าแห่งชาติ: NEC 1999-2008อุปกรณ์ป้องกันอาร์ค: IEEE 1547คลื่นแม่เหล็กไฟฟ้า: BS EN 55022, FCC Class B ต่อ CISPR 22B, EMC 89/336/EEG, EN 50081-1, EN 61000-3-2, EN 50082-2, EN 60950ไมโครอินเวอร์เตอร์ (Micro-inverter) : UL1741-calss Aอัตราความล้มเหลวของส่วนประกอบทั่วไป: MIL HB-217Fข้อมูลจำเพาะอื่นๆ:IEC 503, IEC 62380 IEEE1547, IEEE929, IEEE-P929, IEEE SCC21, ANSI/NFPA-70 NEC690.2, NEC690.5, NEC690.6, NEC690.10, NEC690.11, NEC690.14, NEC690.17, NEC690.18, เอ็นอีซี690.64ข้อมูลจำเพาะหลักของโมดูลโซลาร์เซลล์ AC:อุณหภูมิในการทำงาน: -20℃ ~ 46℃, -40℃ ~ 60℃, -40℃ ~ 65℃, -40℃ ~ 85℃, -20 ~ 90℃แรงดันไฟขาออก: 120/240V, 117V, 120/208Vความถี่กำลังขับ: 60Hzข้อดีของโมดูล AC:1. พยายามเพิ่มการผลิตพลังงานของโมดูลพลังงานอินเวอร์เตอร์แต่ละตัวและติดตามพลังงานสูงสุด เนื่องจากการติดตามจุดพลังงานสูงสุดของส่วนประกอบแต่ละชิ้น ทำให้สามารถปรับปรุงการผลิตพลังงานของระบบโฟโตวอลตาอิคได้อย่างมาก ซึ่งสามารถเพิ่มขึ้นได้ถึง 25%2. โดยปรับแรงดันและกระแสไฟฟ้าของแผงโซลาร์เซลล์แต่ละแถวจนกระทั่งสมดุลกัน เพื่อหลีกเลี่ยงความไม่ตรงกันของระบบ3. แต่ละโมดูลมีฟังก์ชั่นการตรวจสอบเพื่อลดต้นทุนการบำรุงรักษาระบบและทำให้การทำงานมีเสถียรภาพและเชื่อถือได้มากขึ้น4. การกำหนดค่ามีความยืดหยุ่น และขนาดเซลล์แสงอาทิตย์สามารถติดตั้งในตลาดครัวเรือนได้ตามทรัพยากรทางการเงินของผู้ใช้งาน5. ไม่มีแรงดันไฟฟ้าสูง ปลอดภัยต่อการใช้งาน ติดตั้งง่าย รวดเร็ว ต้นทุนการบำรุงรักษาและการติดตั้งต่ำ ลดการพึ่งพาผู้ให้บริการติดตั้ง ทำให้ผู้ใช้สามารถติดตั้งระบบพลังงานแสงอาทิตย์ได้ด้วยตนเอง6. ค่าใช้จ่ายใกล้เคียงกับหรือต่ำกว่าอินเวอร์เตอร์แบบรวมศูนย์7. ติดตั้งง่าย (ลดเวลาในการติดตั้งได้ครึ่งหนึ่ง)8. ลดต้นทุนการจัดหาและติดตั้ง9. ลดต้นทุนโดยรวมของการผลิตพลังงานแสงอาทิตย์10. ไม่มีการเดินสายและโปรแกรมการติดตั้งพิเศษ11. ความล้มเหลวของโมดูล AC ตัวเดียวไม่ส่งผลกระทบต่อโมดูลหรือระบบอื่นๆ12. หากโมดูลผิดปกติ สวิตช์ไฟจะถูกตัดโดยอัตโนมัติ13. จำเป็นต้องใช้เพียงขั้นตอนการขัดจังหวะง่ายๆ สำหรับการบำรุงรักษา14. สามารถติดตั้งได้ทุกทิศทางและจะไม่ส่งผลกระทบต่อโมดูลอื่น ๆ ในระบบ15. สามารถเติมเต็มพื้นที่วางได้ทั้งหมด เพียงวางไว้ข้างใต้16. ลดสะพานระหว่างสาย DC และสายเคเบิล17. ลดการใช้ขั้วต่อ DC (DC connectors)18. ลดการตรวจจับไฟรั่วลงดิน DC และตั้งค่าอุปกรณ์ป้องกัน19. ลดการใช้กล่องรวมสาย DC20. ลดไดโอดบายพาสของโมดูลพลังงานแสงอาทิตย์21. ไม่จำเป็นต้องซื้อ ติดตั้ง และบำรุงรักษาอินเวอร์เตอร์ขนาดใหญ่22. ไม่จำเป็นต้องซื้อแบตเตอรี่23. แต่ละโมดูลได้รับการติดตั้งอุปกรณ์ป้องกันอาร์กซึ่งเป็นไปตามข้อกำหนดของ UL174124. โมดูลสื่อสารโดยตรงผ่านสายไฟฟ้ากระแสสลับโดยไม่ต้องตั้งค่าสายสื่อสารอื่น25. ส่วนประกอบลดลง 40%
    อ่านเพิ่มเติม
  • โมดูลโซลาร์เซลล์และไมโครอินเวอร์เตอร์ AC 3 โมดูลโซลาร์เซลล์และไมโครอินเวอร์เตอร์ AC 3
    Oct 08, 2024
    โมดูลโซลาร์เซลล์และไมโครอินเวอร์เตอร์ AC 3วิธีทดสอบโมดูล AC:1. การทดสอบประสิทธิภาพเอาต์พุต: อุปกรณ์ทดสอบโมดูลที่มีอยู่ สำหรับการทดสอบโมดูลที่ไม่เกี่ยวข้องกับอินเวอร์เตอร์2. การทดสอบความเครียดทางไฟฟ้า: ดำเนินการทดสอบวงจรอุณหภูมิภายใต้เงื่อนไขต่างๆ เพื่อประเมินคุณลักษณะของอินเวอร์เตอร์ภายใต้เงื่อนไขอุณหภูมิการทำงานและอุณหภูมิสแตนด์บาย3. การทดสอบความเค้นทางกล: ค้นหาไมโครอินเวอร์เตอร์ที่มีการยึดเกาะที่อ่อนแอและตัวเก็บประจุที่เชื่อมบนแผงวงจรพิมพ์4. ใช้เครื่องจำลองพลังงานแสงอาทิตย์สำหรับการทดสอบโดยรวม: ต้องใช้เครื่องจำลองพลังงานแสงอาทิตย์แบบพัลส์สถานะคงที่ที่มีขนาดใหญ่และมีความสม่ำเสมอที่ดี5. การทดสอบกลางแจ้ง: บันทึกกราฟเส้น IV เอาต์พุตของโมดูลและกราฟเส้นการแปลงประสิทธิภาพอินเวอร์เตอร์ในสภาพแวดล้อมกลางแจ้ง6. การทดสอบแบบรายบุคคล: ส่วนประกอบแต่ละส่วนของโมดูลจะได้รับการทดสอบแยกกันในห้อง และผลประโยชน์โดยรวมจะคำนวณโดยใช้สูตร7. การทดสอบการรบกวนทางแม่เหล็กไฟฟ้า: เนื่องจากโมดูลมีส่วนประกอบอินเวอร์เตอร์ จึงจำเป็นต้องประเมินผลกระทบต่อ EMC&EMI เมื่อโมดูลทำงานภายใต้เครื่องจำลองแสงแดดสาเหตุความล้มเหลวทั่วไปของโมดูล AC:1.ค่าความต้านทานไม่ถูกต้อง2. ไดโอดถูกกลับขั้ว3. สาเหตุการขัดข้องของอินเวอร์เตอร์: ตัวเก็บประจุไฟฟ้าขัดข้อง ความชื้น ฝุ่นละอองเงื่อนไขการทดสอบโมดูล AC:การทดสอบ HAST: 110℃/85%RH/206 ชม. (ห้องปฏิบัติการแห่งชาติ Sandia)การทดสอบอุณหภูมิสูง (UL1741): 50℃, 60℃วงจรอุณหภูมิ: -40℃←→90℃/200รอบการแช่แข็งแบบเปียก: 85℃/85%RH←→-40℃/10 รอบ, 110 รอบ (การทดสอบ Enphase-ALT)การทดสอบความร้อนแบบเปียก: 85℃/85%RH/1000 ชม.การทดสอบแรงดันสิ่งแวดล้อมหลายประเภท (MEOST): -50℃ ~ 120℃, การสั่นสะเทือน 30G ~ 50Gกันน้ำ: NEMA 6/24 ชั่วโมงการทดสอบฟ้าผ่า: ทนแรงดันไฟกระชากได้สูงถึง 6,000Vอื่นๆ (โปรดดู UL1703): การทดสอบการพ่นน้ำ การทดสอบความแข็งแรงแรงดึง การทดสอบป้องกันการเกิดอาร์กโมดูลที่เกี่ยวข้องกับพลังงานแสงอาทิตย์ MTBF:อินเวอร์เตอร์แบบดั้งเดิม 10 ~ 15 ปี อินเวอร์เตอร์ไมโคร 331 ปี โมดูล PV 600 ปี อินเวอร์เตอร์ไมโคร 600 ปี[อนาคต]การแนะนำไมโครอินเวอร์เตอร์:คำแนะนำ: ไมโครอินเวอร์เตอร์ (ไมโครอินเวอร์เตอร์) ที่ใช้กับโมดูลโซลาร์เซลล์ โดยแต่ละโมดูลโซลาร์เซลล์ DC จะติดตั้งไว้ ซึ่งจะช่วยลดโอกาสเกิดอาร์คได้ ไมโครอินเวอร์เตอร์สามารถเชื่อมต่อโดยตรงผ่านสายจ่ายไฟ AC เพื่อสื่อสารเครือข่ายโดยตรง เพียงแค่ติดตั้ง Powerline Ethernet Bridge (Powerline Ethernet Bridge) บนซ็อกเก็ต ก็ไม่จำเป็นต้องตั้งค่าสายสื่อสารอื่น ผู้ใช้สามารถดูสถานะการทำงานของแต่ละโมดูล (กำลังไฟออก อุณหภูมิของโมดูล ข้อความแจ้งข้อผิดพลาด รหัสระบุโมดูล) ได้โดยตรงผ่านหน้าเว็บคอมพิวเตอร์ iPhone, Blackberry, แท็บเล็ตคอมพิวเตอร์... ฯลฯ หากพบสิ่งผิดปกติ ก็สามารถซ่อมแซมหรือเปลี่ยนใหม่ได้ทันที ทำให้ระบบพลังงานแสงอาทิตย์ทั้งหมดทำงานได้อย่างราบรื่น เนื่องจากไมโครอินเวอร์เตอร์ติดตั้งไว้ด้านหลังโมดูล ดังนั้น ผลของรังสีอัลตราไวโอเลตที่ส่งผลต่อไมโครอินเวอร์เตอร์จึงต่ำเช่นกันข้อมูลจำเพาะไมโครอินเวอร์เตอร์:UL 1741 CSA 22.2, CSA 22.2, หมายเลข 107.1-1 IEEE 1547 IEEE 929 FCC 47CFR, ส่วนที่ 15, คลาส B สอดคล้องกับมาตรฐานไฟฟ้าแห่งชาติ (NEC 1999-2008) EIA-IS-749 (การทดสอบอายุการใช้งานแอปพลิเคชันหลักที่แก้ไข ข้อกำหนดสำหรับการใช้งานตัวเก็บประจุ)การทดสอบไมโครอินเวอร์เตอร์:1. การทดสอบความน่าเชื่อถือของไมโครอินเวอร์เตอร์: น้ำหนักไมโครอินเวอร์เตอร์ +65 ปอนด์ *4 ครั้ง2. การทดสอบกันน้ำของไมโครอินเวอร์เตอร์: NEMA 6[การทำงานต่อเนื่อง 1 เมตรในน้ำเป็นเวลา 24 ชั่วโมง]3. การแช่แข็งแบบเปียกตามวิธีการทดสอบ IEC61215: 85℃/85%RH←→-45℃/110 วัน4. การทดสอบอายุการใช้งานที่เร่งขึ้นของไมโครอินเวอร์เตอร์ [รวมทั้งหมด 110 วัน การทดสอบแบบไดนามิกที่กำลังไฟที่กำหนด ทำให้มั่นใจได้ว่าไมโครอินเวอร์เตอร์จะมีอายุการใช้งานได้มากกว่า 20 ปี] :ขั้นตอนที่ 1: การแช่แข็งแบบเปียก: 85℃/85%RH←→-45℃/10 วันขั้นตอนที่ 2: วงจรอุณหภูมิ: -45℃←→85℃/50 วันขั้นตอนที่ 3: ความร้อนชื้น: 85℃/85%RH/50 วัน
    อ่านเพิ่มเติม

ฝากข้อความ

ฝากข้อความ
หากคุณสนใจผลิตภัณฑ์ของเราและต้องการทราบรายละเอียดเพิ่มเติม โปรดฝากข้อความไว้ที่นี่ เราจะตอบกลับคุณโดยเร็วที่สุด
ส่ง

บ้าน

สินค้า

วอทส์แอพพ์

ติดต่อเรา